Convective Initiation in an Idealized Cloud Model Using an Updraft Nudging Technique

Jason Naylor Department of Atmospheric Sciences, University of North Dakota, Grand Forks, North Dakota

Search for other papers by Jason Naylor in
Current site
Google Scholar
PubMed
Close
and
Matthew S. Gilmore Department of Atmospheric Sciences, University of North Dakota, Grand Forks, North Dakota

Search for other papers by Matthew S. Gilmore in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Previous cloud modeling studies have noted difficulty in producing strong, sustained deep convection in environments with convective inhibition and/or midlevel dryness when the thermal bubble technique is used to initiate convection. This difficulty is also demonstrated herein, using 113 supercell proximity soundings—most of which contain capping inversions and some amount of convective inhibition. Instead, by using an updraft nudging initiation technique, substantially more supercells result and for a longer period. Additionally, the number of supercell-producing cases is maximized when updraft nudging is applied for only the first 15 min of cloud time near the top of the boundary layer instead of longer/shorter periods or when nudging is applied near the surface.

Corresponding author address: Jason Naylor, NorthWest Research Associates, 3380 Mitchell Ln., Boulder, CO 80301. E-mail: jnaylor@nwra.com

Abstract

Previous cloud modeling studies have noted difficulty in producing strong, sustained deep convection in environments with convective inhibition and/or midlevel dryness when the thermal bubble technique is used to initiate convection. This difficulty is also demonstrated herein, using 113 supercell proximity soundings—most of which contain capping inversions and some amount of convective inhibition. Instead, by using an updraft nudging initiation technique, substantially more supercells result and for a longer period. Additionally, the number of supercell-producing cases is maximized when updraft nudging is applied for only the first 15 min of cloud time near the top of the boundary layer instead of longer/shorter periods or when nudging is applied near the surface.

Corresponding author address: Jason Naylor, NorthWest Research Associates, 3380 Mitchell Ln., Boulder, CO 80301. E-mail: jnaylor@nwra.com
Save
  • Adlerman, E. J., and K. K. Droegemeier, 2005: The dependence of numerically simulated cyclic mesocyclogenesis upon environmental vertical wind shear. Mon. Wea. Rev., 133, 35953623.

    • Search Google Scholar
    • Export Citation
  • Adlerman, E. J., K. K. Droegemeier, and R. Davies-Jones, 1999: A numerical simulation of cyclic mesocyclogenesis. J. Atmos. Sci., 56, 20452069.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., 1992: Operational implications of the sensitivity of modelled thunderstorms to thermal perturbations. Preprints, Fourth AES/CMOS Workshop on Operational Meteorology, Whistler, British Columbia, Canada, Atmospheric and Environmental Service and Canadian Meteorological and Oceanographic Society, 398–407.

  • Brooks, H. E., and R. B. Wilhelmson, 1993: Hodograph curvature and updraft intensity in numerically modeled supercells. J. Atmos. Sci., 50, 18241850.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., C. A. Doswell III, and J. Cooper, 1994: On the environments of tornadic and nontornadic mesocyclones. Wea. Forecasting, 9, 606618.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928.

  • Chen, C. H., and H. D. Orville, 1980: Effects of mesoscale convergence on cloud convection. J. Appl. Meteor., 19, 256274.

  • Davies, J. M., 2004: Estimations of CIN and LFC associated with tornadic and nontornadic supercells. Wea. Forecasting, 19, 714726.

  • Doswell, C. A., III, and E. N. Rasmussen, 1994: The effect of neglecting the virtual temperature correction on CAPE calculations. Wea. Forecasting, 9, 619623.

    • Search Google Scholar
    • Export Citation
  • Elmore, K. L., D. J. Stensrud, and K. C. Crawford, 2002: Explicit cloud-scale models for operational forecasts: A note of caution. Wea. Forecasting, 17, 873884.

    • Search Google Scholar
    • Export Citation
  • Gilmore, M. S., and L. J. Wicker, 1998: The influence of midtropospheric dryness on supercell morphology and evolution. Mon. Wea. Rev., 126, 943958.

    • Search Google Scholar
    • Export Citation
  • Gilmore, M. S., J. M. Straka, and E. N. Rasmussen, 2004: Precipitation and evolution sensitivity in simulated deep convective storms: Comparisons between liquid-only and simple ice and liquid phase microphysics. Mon. Wea. Rev., 132, 18971916.

    • Search Google Scholar
    • Export Citation
  • Grasso, L. D., and W. R. Cotton, 1995: Numerical simulation of a tornado vortex. J. Atmos. Sci., 52, 11921203.

  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 10701096.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., R. B. Wilhelmson, and P. S. Ray, 1981: Observed and numerically simulated structure of a mature supercell thunderstorm. J. Atmos. Sci., 38, 15581580.

    • Search Google Scholar
    • Export Citation
  • Letkewicz, C. E., and M. D. Parker, 2011: Impact of environmental variations on simulated squall lines interacting with terrain. Mon. Wea. Rev., 139, 31633183.

    • Search Google Scholar
    • Export Citation
  • Loftus, A. M., D. B. Weber, and C. A. Doswell III, 2008: Parameterized mesoscale forcing mechanisms for initiating numerically simulated isolated multicellular convection. Mon. Wea. Rev., 136, 24082421.

    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., Jr., and C. Cohen, 2004: The initiation, longevity, and morphology of simulated convective storms as a function of free-tropospheric relative humidity. Preprints, 11th Conf. on Aviation, Range, and Aerospace/22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., 8A.5. [Available online at https://ams.confex.com/ams/11aram22sls/webprogram/Paper81251.html.]

  • McPherson, R. A., and K. K. Droegemeier, 1991: Numerical predictability experiments of the 20 May 1977 Del City, OK supercell storm. Preprints, Ninth Conf. on Numerical Weather Prediction, Denver, CO, Amer. Meteor. Soc., 734–738.

  • Muñoz, L. A., 1994: Structure and evolution of thunderstorms encountering temperature inversions. M.S. thesis, University of Illinois at Urbana–Champaign, 62 pp. [Available from University Library, 1408 West Gregory Dr., Urbana, IL 61801.]

  • Naylor, J., M. S. Gilmore, R. L. Thompson, R. Edwards, and R. B. Wilhelmson, 2012: Comparison of objective supercell identification techniques using an idealized cloud model. Mon. Wea. Rev., 140, 20902102.

    • Search Google Scholar
    • Export Citation
  • Richardson, Y. P., K. K. Dreoegemeier, and R. P. Davies-Jones, 2007: The influence of horizontal environmental variability on numerically simulated convective storms. Part I: Variations in vertical shear. Mon. Wea. Rev., 135, 34293455.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12431261.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., C. M. Mead, and R. Edwards, 2007: Effective storm-relative helicity and bulk shear in supercell thunderstorm environments. Wea. Forecasting, 22, 102115.

    • Search Google Scholar
    • Export Citation
  • Tripoli, G. J., and W. R. Cotton, 1980: A numerical investigation of several factors contributing to the observed variable intensity of deep convection over south Florida. J. Appl. Meteor., 19, 10371063.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1984: The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Wea. Rev., 112, 24792498.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and R. B. Wilhelmson, 1995: Simulation and analysis of tornado development and decay within a three-dimensional supercell thunderstorm. J. Atmos. Sci., 52, 26752703.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., M. P. Kay, and M. P. Foster, 1997: STORMTIPE-95: Results from a convective storm forecast experiment. Wea. Forecasting, 12, 388398.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., T. J. Lee, and R. A. Pielke Sr., 1997: Convective initiation at the dryline: A modeling study. Mon. Wea. Rev., 125, 10011026.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., E. R. Mansell, J. M. Straka, D. R. MacGorman, and D. W. Burgess, 2010: The impact of spatial variations of low-level stability on the life cycle of a simulated supercell storm. Mon. Wea. Rev., 138, 17381766.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 895 340 125
PDF Downloads 627 164 15