Comparison of Single-Parameter and Multiparameter Ensembles for Assimilation of Radar Observations Using the Ensemble Kalman Filter

Nusrat Yussouf Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Nusrat Yussouf in
Current site
Google Scholar
PubMed
Close
and
David J. Stensrud NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by David J. Stensrud in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Observational studies indicate that the densities and intercept parameters of hydrometeor distributions can vary widely among storms and even within a single storm. Therefore, assuming a fixed set of microphysical parameters within a given microphysics scheme can lead to significant errors in the forecasts of storms. To explore the impact of variations in microphysical parameters, Observing System Simulation Experiments are conducted based on both perfect- and imperfect-model assumptions. Two sets of ensembles are designed using either fixed or variable parameters within the same single-moment microphysics scheme. The synthetic radar observations of a splitting supercell thunderstorm are assimilated into the ensembles over a 30-min period using an ensemble Kalman filter data assimilation technique followed by 1-h ensemble forecasts. Results indicate that in the presence of a model error, a multiparameter ensemble with a combination of different hydrometeor density and intercept parameters leads to improved analyses and forecasts and better captures the truth within the forecast envelope compared to single-parameter ensemble experiments with a single, constant, inaccurate hydrometeor intercept and density parameters. This conclusion holds when examining the general storm structure, the intensity of midlevel rotation, surface cold pool strength, and the extreme values of the model fields that are most helpful in determining and identifying potential hazards. Under a perfect-model assumption, the single- and multiparameter ensembles perform similarly as model error does not play a role in these experiments. This study highlights the potential for using a variety of realistic microphysical parameters across the ensemble members in improving the analyses and very short-range forecasts of severe weather events.

Corresponding author address: Dr. Nusrat Yussouf, NOAA/National Severe Storms Laboratory, National Weather Center, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: nusrat.yussouf@noaa.gov

Abstract

Observational studies indicate that the densities and intercept parameters of hydrometeor distributions can vary widely among storms and even within a single storm. Therefore, assuming a fixed set of microphysical parameters within a given microphysics scheme can lead to significant errors in the forecasts of storms. To explore the impact of variations in microphysical parameters, Observing System Simulation Experiments are conducted based on both perfect- and imperfect-model assumptions. Two sets of ensembles are designed using either fixed or variable parameters within the same single-moment microphysics scheme. The synthetic radar observations of a splitting supercell thunderstorm are assimilated into the ensembles over a 30-min period using an ensemble Kalman filter data assimilation technique followed by 1-h ensemble forecasts. Results indicate that in the presence of a model error, a multiparameter ensemble with a combination of different hydrometeor density and intercept parameters leads to improved analyses and forecasts and better captures the truth within the forecast envelope compared to single-parameter ensemble experiments with a single, constant, inaccurate hydrometeor intercept and density parameters. This conclusion holds when examining the general storm structure, the intensity of midlevel rotation, surface cold pool strength, and the extreme values of the model fields that are most helpful in determining and identifying potential hazards. Under a perfect-model assumption, the single- and multiparameter ensembles perform similarly as model error does not play a role in these experiments. This study highlights the potential for using a variety of realistic microphysical parameters across the ensemble members in improving the analyses and very short-range forecasts of severe weather events.

Corresponding author address: Dr. Nusrat Yussouf, NOAA/National Severe Storms Laboratory, National Weather Center, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: nusrat.yussouf@noaa.gov
Save
  • Aksoy, A., D. C. Dowell, and C. Snyder, 2009: A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part I: Storm-scale analyses. Mon. Wea. Rev., 137, 18051824.

    • Search Google Scholar
    • Export Citation
  • Aksoy, A., D. C. Dowell, and C. Snyder, 2010: A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part II: Short-range ensemble forecasts. Mon. Wea. Rev., 138, 12731292.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2007: An adaptive covariance inflation error correction algorithm for ensemble filters. Tellus, 59A, 210224.

  • Anderson, J. L., 2009: Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus, 61A, 7283.

  • Brooks, H. E., C. A. Doswell III, and J. Cooper, 1994: On the environments of tornadic and nontornadic mesocyclones. Wea. Forecasting, 9, 606618.

    • Search Google Scholar
    • Export Citation
  • Cheng, L., M. English, and R. Wong, 1985: Hailstone size distributions and their relationship to storm thermodynamics. J. Climate Appl. Meteor., 24, 10591067.

    • Search Google Scholar
    • Export Citation
  • Cifelli, R., C. R. Williams, D. K. Rajopadhyaya, S. K. Avery, K. S. Gage, and P. T. May, 2000: Drop-size distribution characteristics in tropical mesoscale convective systems. J. Appl. Meteor., 39, 760777.

    • Search Google Scholar
    • Export Citation
  • Cohen, C., and E. W. McCaul, 2006: The sensitivity of simulated convective storms to variations in prescribed single-moment microphysics parameters that describe particle distributions, sizes, and numbers. Mon. Wea. Rev., 134, 25472565.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., D. J. Stensrud, and L. J. Wicker, 2006: Effects of upper-level shear on the structure and maintenance of strong quasi-linear mesoscale convective systems. J. Atmos. Sci., 63, 12311252.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and L. J. Wicker, 2009: Additive noise for storm-scale ensemble forecasting and data assimilation. J. Atmos. Oceanic Technol., 26, 911927.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., F. Zhang, L. J. Wicker, C. Snyder, and N. A. Crook, 2004a: Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell: Ensemble Kalman filter experiments. Mon. Wea. Rev., 132, 19822005.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., L. J. Wicker, and D. J. Stensrud, 2004b: High resolution analyses of the 8 May 2003 Oklahoma City storm. Part II: EnKF data assimilation and forecast experiments. Preprints, 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., 12.5. [Available online at http://ams.confex.com/ams/11aram22sls/techprogram/paper_81393.htm.]

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., L. J. Wicker, and C. Snyder, 2011: Ensemble Kalman filter assimilation of radar observations of the 8 May 2003 Oklahoma City supercell: Influences of reflectivity observations on storm-scale analyses. Mon. Wea. Rev., 139, 272294.

    • Search Google Scholar
    • Export Citation
  • Dye, J. E., and B. E. Martner, 1978: The relationship between radar reflectivity factor and hail at the ground for northeast Colorado thunderstorms. J. Appl. Meteor., 17, 13351341.

    • Search Google Scholar
    • Export Citation
  • Efron, B., and R. J. Tibshirani, 1993: An Introduction to the Bootstrap. Chapman and Hall, 436 pp.

  • Fujita, T., D. J. Stensrud, and D. C. Dowell, 2007: Surface data assimilation using an ensemble Kalman filter approach with initial condition and model physics uncertainty. Mon. Wea. Rev., 135, 18461868.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757.

    • Search Google Scholar
    • Export Citation
  • Gilmore, M. S., and L. J. Wicker, 1998: The influence of midtropospheric dryness on supercell morphology and evolution. Mon. Wea. Rev., 126, 943958.

    • Search Google Scholar
    • Export Citation
  • Gilmore, M. S., J. M. Straka, and E. N. Rasmussen, 2004a: Precipitation and evolution sensitivity in simulated deep convective storms: Comparisons between liquid-only and simple ice and liquid phase microphysics. Mon. Wea. Rev., 132, 18971916.

    • Search Google Scholar
    • Export Citation
  • Gilmore, M. S., J. M. Straka, and L. J. Wicker, 2004b: Precipitation uncertainty due to variations in precipitation particle parameters within a simple microphysics scheme. Mon. Wea. Rev., 132, 26102627.

    • Search Google Scholar
    • Export Citation
  • Hacker, J. P., C. Snyder, S.-Y. Ha, and M. Pocernich, 2011: Linear and non-linear response to parameter variations in a mesoscale model. Tellus, 63A, 429444.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Houtekamer, P. L., and H. L. Mitchell, 2001: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 129, 123137.

    • Search Google Scholar
    • Export Citation
  • Joss, J., and A. Waldvogel, 1969: Raindrop size distribution and sampling size errors. J. Atmos. Sci., 26, 566569.

  • Knight, C. A., W. A. Cooper, D. W. Breed, I. R. Paluch, P. L. Smith, and G. Vali, 1982: Microphysics. Hailstorms of the Central High Plains, C. Knight and P. Squires, Eds., Vol. 1, Colorado Associated University Press, 151–193.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092.

    • Search Google Scholar
    • Export Citation
  • Lord, S. J., E. Kalnay, R. Daley, G. D. Emmitt, and R. Atlas, 1997: Using OSSEs in the design of the future generation of integrated observing systems. Preprints, First Symp. on Integrated Observation Systems, Long Beach, CA, Amer. Meteor. Soc., 45–47.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and W. McK. Palmer, 1948: The distribution of raindrops with size. J. Atmos. Sci., 5, 165166.

  • Mather, G. K., D. Treddenick, and R. Parsons, 1976: An observed relationship between the height of the 45 dBZ contours in storm profiles and surface hail reports. J. Appl. Meteor., 15, 13361340.

    • Search Google Scholar
    • Export Citation
  • Meng, Z., and F. Zhang, 2007: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part II: Imperfect model experiments. Mon. Wea. Rev., 135, 14031423.

    • Search Google Scholar
    • Export Citation
  • Meng, Z., and F. Zhang, 2008: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part III: Comparison with 3DVAR in a real- data case study. Mon. Wea. Rev., 136, 522540.

    • Search Google Scholar
    • Export Citation
  • Ortega, K. L., T. M. Smith, K. L. Manross, K. A. Scharfenberg, A. Witt, A. G. Kolodziej, and J. J. Gourley, 2009: The Severe Hazards Analysis and Verification Experiment. Bull. Amer. Meteor. Soc., 90, 15191530.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1978: Microphysics of Clouds and Precipitation. Reidel, 714 pp.

  • Renick, J. H., and J. B. Maxwell, 1977: Forecasting hailfall in Alberta. Hail: A Review of Hail Science and Hail Suppression, Meteor. Monogr., No. 38, Amer. Meteor. Soc., 145–151.

    • Search Google Scholar
    • Export Citation
  • Schultz, P., 1995: An explicit cloud physics parameterization for operational numerical weather prediction. Mon. Wea. Rev., 123, 33313343.

    • Search Google Scholar
    • Export Citation
  • Snook, N., and M. Xue, 2008: Effects of microphysical drop size distribution on tornadogenesis in supercell thunderstorms. Geophys. Res. Lett., 35, L24803, doi:10.1029/2008GL035866.

    • Search Google Scholar
    • Export Citation
  • Snook, N., M. Xue, and Y. Jung, 2011: Analysis of a tornadic meoscale convective vortex based on ensemble Kalman filter assimilation of CASA X-band and WSR-88D radar data. Mon. Wea. Rev., 139, 34463468.

    • Search Google Scholar
    • Export Citation
  • Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131, 16631677.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., 2007: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, 459 pp.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., J. W. Bao, and T. T. Warner, 2000: Using initial condition and model physics perturbations in short-range ensemble simulations of mesoscale convective systems. Mon. Wea. Rev., 128, 20772107.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., N. Yussouf, D. C. Dowell, and M. C. Coniglio, 2009: Assimilating surface data into a mesoscale model ensemble: Cold pool analyses from spring 2007. Atmos. Res., 93, 207220.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., and E. R. Mansell, 2005: A bulk microphysics parameterization with multiple ice precipitation categories. J. Appl. Meteor., 44, 445466.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., and J. Simpson, 1993: Goddard cumulus ensemble model. Part I: Model description. Terr. Atmos. Oceanic Sci., 4, 3572.

  • Tong, M., and M. Xue, 2005: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev., 133, 17891807.

    • Search Google Scholar
    • Export Citation
  • Tong, M., and M. Xue, 2008a: Simultaneous estimation of microphysical parameters and atmospheric state with radar data and ensemble Kalman filter. Part I: Sensitivity analysis and parameter identifiability. Mon. Wea. Rev., 136, 16301648.

    • Search Google Scholar
    • Export Citation
  • Tong, M., and M. Xue, 2008b: Simultaneous estimation of microphysical parameters and atmospheric state with radar data and ensemble Kalman filter. Part II: Parameter estimation experiments. Mon. Wea. Rev., 136, 16491668.

    • Search Google Scholar
    • Export Citation
  • van den Heever, S. C., and W. R. Cotton, 2004: The impact of hail size on simulated supercell storms. J. Atmos. Sci., 61, 15961609.

  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 19131924.

  • Wicker, L. J., and W. C. Skamarock, 2002: Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130, 20882097.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and D. C. Dowell, 2004: High resolution analyses of the 8 May 2003 Oklahoma City storm. Part III: An ultra-high resolution forecast experiment. Preprints, 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., 12.6. [Available online at http://ams.confex.com/ams/11aram22sls/techprogram/paper_81634.htm.]

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 627 pp.

  • Wood, V. T., R. A. Brown, and D. C. Dowell, 2009: Simulated WSR-88D velocity and reflectivity signatures of numerically modeled tornadoes. J. Atmos. Oceanic Technol., 26, 876893.

    • Search Google Scholar
    • Export Citation
  • Xue, M., M. Tong, and K. K. Droegemeier, 2006: An OSSE framework based on the ensemble square root Kalman filter for evaluating the impact of data from radar networks on thunderstorm analysis and forecasting. J. Atmos. Oceanic Technol., 23, 4666.

    • Search Google Scholar
    • Export Citation
  • Yussouf, N., and D. J. Stensrud, 2010: Impact of phased array radar observations over a short assimilation period: Observing System Simulation Experiments using ensemble Kalman filter. Mon. Wea. Rev., 138, 517538.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., C. Snyder, and J. Sun, 2004: Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon. Wea. Rev., 132, 12381253.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., P. S. Ray, and N. C. Knight, 1983: Hail growth in an Oklahoma multicell storm. J. Atmos. Sci., 40, 17681791.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 388 100 3
PDF Downloads 271 66 5