On the Squall Lines Preceding Landfalling Tropical Cyclones in China

Zhiyong Meng Laboratory for Climate and Ocean–Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Search for other papers by Zhiyong Meng in
Current site
Google Scholar
PubMed
Close
and
Yunji Zhang Laboratory for Climate and Ocean–Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Search for other papers by Yunji Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Based on a 3-yr (2007–09) mosaic of radar reflectivity and conventional surface and synoptic radiosonde observations, the general features of squall lines preceding landfalling tropical cyclones (TCs) (pre-TC) in China are examined and compared with their midlatitude and subtropical counterparts. The results show that about 40% of landfalling TCs are associated with pre-TC squall lines with high-occurring frequency in August and from late afternoon to midnight. Most pre-TC squall lines form in a broken-line mode with a trailing-stratiform organization. On average, they occur about 600 km from the TC center in the front-right quadrant with a maximum length of 220 km, a maximum radar reflectivity of 57–62 dBZ, a life span of 4 h, and a moving speed of 12.5 m s−1. Pre-TC squall lines are generally shorter in lifetime and length than typical midlatitude squall lines.

Pre-TC squall lines tend to form in the transition area between the parent TC and subtropical high in a moist environment and with a weaker cold pool than their midlatitude counterparts. The environmental 0–3-km vertical shear is around 10 m s−1 and generally normal to the orientation of the squall lines. This weak shear makes pre-TC squall lines in a suboptimal condition according to the Rottuno–Klemp–Weisman (RKW) theory. Convection is likely initiated by low-level mesoscale frontogenesis, convergence, and/or confluence instead of synoptic-scale forcing. The parent TC may contribute to (i) the development of convection by enhancing conditional instability and low-level moisture supply, and (ii) the linear organization of discrete convection through the interaction between the TC and the neighboring environmental system.

Corresponding author address: Dr. Zhiyong Meng, Laboratory for Climate and Ocean–Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, 201 Chengfu Rd., Haidian District, Beijing 100871, China. E-mail: zymeng@pku.edu.cn

Abstract

Based on a 3-yr (2007–09) mosaic of radar reflectivity and conventional surface and synoptic radiosonde observations, the general features of squall lines preceding landfalling tropical cyclones (TCs) (pre-TC) in China are examined and compared with their midlatitude and subtropical counterparts. The results show that about 40% of landfalling TCs are associated with pre-TC squall lines with high-occurring frequency in August and from late afternoon to midnight. Most pre-TC squall lines form in a broken-line mode with a trailing-stratiform organization. On average, they occur about 600 km from the TC center in the front-right quadrant with a maximum length of 220 km, a maximum radar reflectivity of 57–62 dBZ, a life span of 4 h, and a moving speed of 12.5 m s−1. Pre-TC squall lines are generally shorter in lifetime and length than typical midlatitude squall lines.

Pre-TC squall lines tend to form in the transition area between the parent TC and subtropical high in a moist environment and with a weaker cold pool than their midlatitude counterparts. The environmental 0–3-km vertical shear is around 10 m s−1 and generally normal to the orientation of the squall lines. This weak shear makes pre-TC squall lines in a suboptimal condition according to the Rottuno–Klemp–Weisman (RKW) theory. Convection is likely initiated by low-level mesoscale frontogenesis, convergence, and/or confluence instead of synoptic-scale forcing. The parent TC may contribute to (i) the development of convection by enhancing conditional instability and low-level moisture supply, and (ii) the linear organization of discrete convection through the interaction between the TC and the neighboring environmental system.

Corresponding author address: Dr. Zhiyong Meng, Laboratory for Climate and Ocean–Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, 201 Chengfu Rd., Haidian District, Beijing 100871, China. E-mail: zymeng@pku.edu.cn
Save
  • Barnes, G. M., and K. Sieckman, 1984: The environment of fast- and slow-moving tropical mesoscale convective cloud lines. Mon. Wea. Rev., 112, 17821794.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and M. H. Jain, 1985: Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring. J. Atmos. Sci., 42, 17111732.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., J. C. Knievel, and M. D. Parker, 2006: A multimodel assessment of RKW Theory’s relevance to squall-line characteristics. Mon. Wea. Rev., 134, 27722792.

    • Search Google Scholar
    • Export Citation
  • Chen, G. T.-J., and H.-C. Chou, 1993: General characteristics of squall lines observed in TAMEX. Mon. Wea. Rev., 121, 726733.

  • Dial, G. L., J. P. Racy, and R. L. Thompson, 2010: Short-term convective mode evolution along synoptic boundaries. Wea. Forecasting, 25, 14301446.

    • Search Google Scholar
    • Export Citation
  • Ding, Y.-H., H.-Z. Li, M.-L. Zhang, J.-S. Li, and Z.-Y. Cai, 1982: A study on the formation condition of squall line in China (in Chinese). Chin. J. Atmos. Sci., 6, 1827.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560581.

    • Search Google Scholar
    • Export Citation
  • Draxler, R. R., and G. D. Rolph, cited 2011: HYSPLIT (HYbrid SingleParticle Lagrangian Integrated Trajectory) Model. NOAA/Air Resources Laboratory, Silver Spring, MD. [Available online at http://ready.arl.noaa.gov/HYSPLIT.php.]

    • Search Google Scholar
    • Export Citation
  • Engerer, N. A., D. J. Stensrud, and M. C. Coniglio, 2008: Surface characteristics of observed cold pools. Mon. Wea. Rev., 136, 48394849.

    • Search Google Scholar
    • Export Citation
  • Evans, J. S., and C. A. Doswell III, 2001: Examination of derecho environments using proximity soundings. Wea. Forecasting, 16, 329342.

    • Search Google Scholar
    • Export Citation
  • Galarneau, T. J., Jr., L. F. Bosart, and R. S. Schumacher, 2010: Predecessor rain events ahead of tropical cyclones. Mon. Wea. Rev., 138, 32723297.

    • Search Google Scholar
    • Export Citation
  • Gao, S., Z. Meng, F. Zhang, and L. F. Bosart, 2009: Observational analysis of heavy rainfall mechanisms associated with severe Tropical Storm Bilis (2006) after its landfall. Mon. Wea. Rev., 137, 18811897.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., 1998: Mesoscale convective systems in the Southeast United States during 1994–95: A survey. Wea. Forecasting, 13, 860869.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and D. Devenyi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 16931696.

    • Search Google Scholar
    • Export Citation
  • He, H., and F. Zhang, 2010: Diurnal variations of warm-season precipitation over northern China. Mon. Wea. Rev., 138, 10171025.

  • Hong, S.-Y., K.-S. Sunny Lim, Y.-H. Lee, J.-C. Ha, H.-W. Kim, S.-J. Ham, and J. Dudhia, 2010: Evaluation of the WRF double-moment 6-class microphysics scheme for precipitating convection. Adv. Meteor., 2010, 707253, doi:10.1155/2010/707253.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1977: Structure and dynamics of a tropical squall–line system. Mon. Wea. Rev., 105, 15401567.

  • Houze, R. A., Jr., 1993: Cloud Dynamics. Academic Press, 573 pp.

  • Houze, R. A., Jr., B. F. Smull, and P. Dodge, 1990: Mesoscale organization of springtime rainstorms in Oklahoma. Mon. Wea. Rev., 118, 613654.

    • Search Google Scholar
    • Export Citation
  • James, R. P., J. M. Fritsch, and P. M. Markowski, 2005: Environmental distinctions between cellular and slabular convective lines. Mon. Wea. Rev., 133, 26692691.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Li, H.-Z., 1988: Features of squall lines on regional surface weather map and their nowcasting in North China (in Chinese). Chin. J. Atmos. Sci., 12, 4248.

    • Search Google Scholar
    • Export Citation
  • Low-Nam, S., and C. Davis, 2001: Development of a tropical cyclone bogussing scheme for the MM5 system. Preprints, 11th PSU/NCAR Mesoscale Model Users’ Workshop, Boulder, CO, PSU/NCAR, 130–134.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., W.-G. Cheon, S.-Y. Hong, and S. Raasch, 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107, 401427.

    • Search Google Scholar
    • Export Citation
  • Parker, M. D., and R. H. Johnson, 2000: Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev., 128, 34133436.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1990: Boundary layer structure and dynamics in outer hurricane rainbands. Part I: Mesoscale rainfall and kinematic structure. Mon. Wea. Rev., 118, 891917.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485.

  • Schumacher, R. S., T. J. Galarneau Jr., and L. F. Bosart, 2011: Distant effects of a recurving tropical cyclone on rainfall in a midlatitude convective system: A high-impact predecessor rain event. Mon. Wea. Rev., 139, 650667.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note TN-475_STR, 113 pp.

  • Steiner, M., R. A. Houze Jr., and S. E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34, 19782007.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., C. A. Davis, D. A. Ahijevych, M. L. Weisman, and G. H. Bryan, 2006: Mechanisms supporting long-lived episodes of propagating nocturnal convection within a 7-day WRF model simulation. J. Atmos. Sci., 63, 24372461.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., 1975: Diurnal variations in precipitation and thunderstorm frequency over the conterminous United States. Mon. Wea. Rev., 103, 406419.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and R. Rotunno, 2004: “A theory for strong long-lived squall lines” revisited. J. Atmos. Sci., 61, 361382.

  • Wyss, J., and K. A. Emanuel, 1988: The pre-storm environment of midlatitude prefrontal squall lines. Mon. Wea. Rev., 116, 790794.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2116 945 83
PDF Downloads 612 150 21