Impact of the Environmental Low-Level Wind Profile on Ensemble Forecasts of the 4 May 2007 Greensburg, Kansas, Tornadic Storm and Associated Mesocyclones

Daniel T. Dawson II NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Daniel T. Dawson II in
Current site
Google Scholar
PubMed
Close
,
Louis J. Wicker NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Louis J. Wicker in
Current site
Google Scholar
PubMed
Close
,
Edward R. Mansell NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Edward R. Mansell in
Current site
Google Scholar
PubMed
Close
, and
Robin L. Tanamachi National Weather Center, and Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

Search for other papers by Robin L. Tanamachi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The early tornadic phase of the Greensburg, Kansas, supercell on the evening of 4 May 2007 is simulated using a set of storm-scale (1-km horizontal grid spacing) 30-member ensemble Kalman filter (EnKF) data assimilation and forecast experiments. The Next Generation Weather Radar (NEXRAD) level-II radar data from the Dodge City, Kansas (KDDC), Weather Surveillance Radar-1988 Doppler (WSR-88D) are assimilated into the National Severe Storms Laboratory (NSSL) Collaborative Model for Multiscale Atmospheric Simulation (COMMAS). The initially horizontally homogeneous environments are initialized from one of three reconstructed soundings representative of the early tornadic phase of the storm, when a low-level jet (LLJ) was intensifying. To isolate the impact of the low-level wind profile, 0–3.5-km AGL wind profiles from Vance Air Force Base, Oklahoma (KVNX), WSR-88D velocity-azimuth display (VAD) analyses at 0130, 0200, and 0230 UTC are used. A sophisticated, double-moment bulk ice microphysics scheme is employed.

For each of the three soundings, ensemble forecast experiments are initiated from EnKF analyses at various times prior to and shortly after the genesis of the Greensburg tornado (0200 UTC). Probabilistic forecasts of the mesocyclone-scale circulation(s) are generated and compared to the observed Greensburg tornado track. Probabilistic measures of significant rotation and observation-space diagnostic statistics are also calculated. It is shown that, in general, the track of the Greensburg tornado is well predicted, and forecasts improve as forecast lead time decreases. Significant variability is also seen across the experiments using different VAD wind profiles. Implications of these results regarding the choice of initial mesoscale environment, as well as for the “Warn-on-Forecast” paradigm for probabilistic numerical prediction of severe thunderstorms and tornadoes, are discussed.

Corresponding author address: Daniel T. Dawson II, National Severe Storms Laboratory, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: dan.dawson@noaa.gov

Abstract

The early tornadic phase of the Greensburg, Kansas, supercell on the evening of 4 May 2007 is simulated using a set of storm-scale (1-km horizontal grid spacing) 30-member ensemble Kalman filter (EnKF) data assimilation and forecast experiments. The Next Generation Weather Radar (NEXRAD) level-II radar data from the Dodge City, Kansas (KDDC), Weather Surveillance Radar-1988 Doppler (WSR-88D) are assimilated into the National Severe Storms Laboratory (NSSL) Collaborative Model for Multiscale Atmospheric Simulation (COMMAS). The initially horizontally homogeneous environments are initialized from one of three reconstructed soundings representative of the early tornadic phase of the storm, when a low-level jet (LLJ) was intensifying. To isolate the impact of the low-level wind profile, 0–3.5-km AGL wind profiles from Vance Air Force Base, Oklahoma (KVNX), WSR-88D velocity-azimuth display (VAD) analyses at 0130, 0200, and 0230 UTC are used. A sophisticated, double-moment bulk ice microphysics scheme is employed.

For each of the three soundings, ensemble forecast experiments are initiated from EnKF analyses at various times prior to and shortly after the genesis of the Greensburg tornado (0200 UTC). Probabilistic forecasts of the mesocyclone-scale circulation(s) are generated and compared to the observed Greensburg tornado track. Probabilistic measures of significant rotation and observation-space diagnostic statistics are also calculated. It is shown that, in general, the track of the Greensburg tornado is well predicted, and forecasts improve as forecast lead time decreases. Significant variability is also seen across the experiments using different VAD wind profiles. Implications of these results regarding the choice of initial mesoscale environment, as well as for the “Warn-on-Forecast” paradigm for probabilistic numerical prediction of severe thunderstorms and tornadoes, are discussed.

Corresponding author address: Daniel T. Dawson II, National Severe Storms Laboratory, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: dan.dawson@noaa.gov
Save
  • Aksoy, A., D. C. Dowell, and C. Snyder, 2009: A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part I: Storm-scale analyses. Mon. Wea. Rev., 137, 18051824.

    • Search Google Scholar
    • Export Citation
  • Aksoy, A., D. C. Dowell, and C. Snyder, 2010: A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part II: Short-range ensemble forecasts. Mon. Wea. Rev., 138, 12731292.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2009: Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus, 61A, 7283.

  • Barnes, S. L., 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor., 3, 396409.

  • Bluestein, H. B., 2009: The formation and early evolution of the Greensburg, Kansas, tornadic supercell on 4 May 2007. Wea. Forecasting, 24, 899920.

    • Search Google Scholar
    • Export Citation
  • Caya, A., J. Sun, and C. Snyder, 2005: A comparison between the 4D-VAR and the ensemble Kalman filter techniques for radar data assimilation. Mon. Wea. Rev., 133, 30813094.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., D. J. Stensrud, and L. J. Wicker, 2006: Effects of upper-level shear on the structure and maintenance of strong quasi-linear mesoscale convective systems. J. Atmos. Sci., 63, 12311252.

    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., M. Xue, J. A. Milbrandt, and M. K. Yau, 2010: Comparison of evaporation and cold pool development between single-moment and multimoment bulk microphysics schemes in idealized simulations of tornadic thunderstorms. Mon. Wea. Rev., 138, 11521171.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and L. J. Wicker, 2009: Additive noise for storm-scale ensemble data assimilation. J. Atmos. Oceanic Technol., 26, 911927.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., F. Zhang, L. J. Wicker, C. Snyder, and N. A. Crook, 2004: Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell: Ensemble Kalman filter experiments. Mon. Wea. Rev., 132, 19822005.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., L. J. Wicker, and C. Snyder, 2011: Ensemble Kalman filter assimilation of radar observations of the 8 May 2003 Oklahoma City supercell: Influences of reflectivity observations on storm-scale analyses. Mon. Wea. Rev., 139, 272294.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757.

    • Search Google Scholar
    • Export Citation
  • Gilmore, M. S., J. M. Straka, and E. N. Rasmussen, 2004: Precipitation uncertainty due to variations in precipitation particle parameters within a simple microphysics scheme. Mon. Wea. Rev., 132, 26102627.

    • Search Google Scholar
    • Export Citation
  • Jung, Y., M. Xue, G. Zhang, and J. M. Straka, 2008: Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman filter. Part II: Impact of polarimetric data on storm analysis. Mon. Wea. Rev., 136, 22462260.

    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., and M. Umscheid, 2008: The Greensburg, Kansas tornadic storm: A storm of extremes. Preprints, 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 2.4. [Available online at http://ams.confex.com/ams/pdfpapers/141811.pdf.]

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., C. L. Ziegler, and E. C. Bruning, 2010: Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171194.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2006: A multimoment bulk microphysics parameterization. Part IV: Sensitivity experiments. J. Atmos. Sci., 63, 31373159.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007.

    • Search Google Scholar
    • Export Citation
  • Oye, R., C. Mueller, and S. Smith, 1995: Software for radar translation, visualization, editing, and interpolation. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 359–361.

    • Search Google Scholar
    • Export Citation
  • Snook, N., and M. Xue, 2008: Effects of microphysical drop size distribution on tornadogenesis in supercell thunderstorms. Geophys. Res. Lett., 35, L24803, doi:10.1029/2008GL035866.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and J. Gao, 2010: Importance of horizontally inhomogeneous environmental initial conditions to ensemble storm-scale radar data assimilation and very short-range forecasts. Mon. Wea. Rev., 138, 12501272.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Coauthors, 2009: Convective-scale warn-on-forecast system: A vision for 2020. Bull. Amer. Meteor. Soc., 90, 14871499.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and N. A. Crook, 2001: Real-time low-level wind and temperature analysis using single WSR-88D data. Wea. Forecasting, 16, 117132.

    • Search Google Scholar
    • Export Citation
  • van den Heever, S. C., and W. R. Cotton, 2004: The impact of hail size on simulated supercell storms. J. Atmos. Sci., 61, 15961609.

  • Wicker, L. J., and R. B. Wilhelmson, 1995: Simulation and analysis of tornado development and decay within a three-dimensional supercell thunderstorm. J. Atmos. Sci., 52, 26752703.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., 1985: Retrieval of thermal and microphysical variables in observed convective storms. Part I: Model development and preliminary testing. J. Atmos. Sci., 42, 14871509.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1065 432 75
PDF Downloads 332 98 32