Rapidly Intensifying Hurricane Guillermo (1997). Part II: Resilience in Shear

Paul D. Reasor Hurricane Research Division, NOAA/AOML, Miami, Florida

Search for other papers by Paul D. Reasor in
Current site
Google Scholar
PubMed
Close
and
Matthew D. Eastin Department of Geography and Earth Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina

Search for other papers by Matthew D. Eastin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper examines the structure and evolution of a mature tropical cyclone in vertical wind shear (VWS) using airborne Doppler radar observations of Hurricane Guillermo (1997). In Part I, the modulation of eyewall convection via the rotation of vorticity asymmetries through the downshear-left quadrant was documented during rapid intensification. Here, the focus is on the relationship between VWS, vortex tilt, and associated asymmetry within the tropical cyclone core region during two separate observation periods. A method for estimating local VWS and vortex tilt from radar datasets is further developed, and the resulting vertical structure and its evolution are subjected to statistical confidence tests. Guillermo was a highly resilient vortex, evidenced by its small tilt magnitude relative to the horizontal scale of the vortex core. The deep-layer tilt was statistically significant, oriented on average ~60° left of shear. Large-scale vorticity and thermal asymmetries oriented along the tilt direction support a response of Guillermo to shear forcing that is consistent with balanced dynamics. The time-averaged vertical motion asymmetry within the eyewall exhibited maximum ascent values ~40° left of the deep-layer shear, or in this case, right of the deep-layer tilt. The observation-based analysis of Guillermo’s interaction with VWS confirms findings of recent theoretical and numerical studies, and serves as the basis for a more comprehensive investigation of VWS and tropical cyclone intensity change using a recently constructed multistorm database of Doppler radar analyses.

Corresponding author address: Paul D. Reasor, Hurricane Research Division, NOAA/AOML, Miami, FL 33149. E-mail: paul.reasor@noaa.gov

Abstract

This paper examines the structure and evolution of a mature tropical cyclone in vertical wind shear (VWS) using airborne Doppler radar observations of Hurricane Guillermo (1997). In Part I, the modulation of eyewall convection via the rotation of vorticity asymmetries through the downshear-left quadrant was documented during rapid intensification. Here, the focus is on the relationship between VWS, vortex tilt, and associated asymmetry within the tropical cyclone core region during two separate observation periods. A method for estimating local VWS and vortex tilt from radar datasets is further developed, and the resulting vertical structure and its evolution are subjected to statistical confidence tests. Guillermo was a highly resilient vortex, evidenced by its small tilt magnitude relative to the horizontal scale of the vortex core. The deep-layer tilt was statistically significant, oriented on average ~60° left of shear. Large-scale vorticity and thermal asymmetries oriented along the tilt direction support a response of Guillermo to shear forcing that is consistent with balanced dynamics. The time-averaged vertical motion asymmetry within the eyewall exhibited maximum ascent values ~40° left of the deep-layer shear, or in this case, right of the deep-layer tilt. The observation-based analysis of Guillermo’s interaction with VWS confirms findings of recent theoretical and numerical studies, and serves as the basis for a more comprehensive investigation of VWS and tropical cyclone intensity change using a recently constructed multistorm database of Doppler radar analyses.

Corresponding author address: Paul D. Reasor, Hurricane Research Division, NOAA/AOML, Miami, FL 33149. E-mail: paul.reasor@noaa.gov
Save
  • Bender, M. A., 1997: The effect of relative flow on the asymmetric structure in the interior of hurricanes. J. Atmos. Sci., 54, 703724.

    • Search Google Scholar
    • Export Citation
  • Black, M. L., J. F. Gamache, F. D. Marks, C. E. Samsury, and H. E. Willoughby, 2002: Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994: The effect of vertical shear on structure and intensity. Mon. Wea. Rev., 130, 22912312.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and L. Wu, 2007: A numerical study of Hurricane Erin (2001). Part II: Shear and the organization of eyewall vertical motion. Mon. Wea. Rev., 135, 11791194.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., M. T. Montgomery, and Z. Pu, 2006: High-resolution simulation of Hurricane Bonnie (1998). Part I: The organization of eyewall vertical motion. J. Atmos. Sci., 63, 1942.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic models. Mon. Wea. Rev., 130, 29172928.

  • Corbosiero, K. L., and J. Molinari, 2003: The relationship between storm motion, vertical wind shear, and convective asymmetries in tropical cyclones. J. Atmos. Sci., 60, 366376.

    • Search Google Scholar
    • Export Citation
  • Cram, T. A., J. Persing, M. T. Montgomery, and S. A. Braun, 2007: A Lagrangian trajectory view on transport and mixing processes between the eye, eyewall, and environment using a high-resolution simulation of Hurricane Bonnie (1998). J. Atmos. Sci., 64, 18351856.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., S. C. Jones, and M. Riemer, 2008: Hurricane vortex dynamics during Atlantic extratropical transition. J. Atmos. Sci., 65, 714736.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 20762088.

  • DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531543.

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., P. G. Black, and W. M. Gray, 2002: Flight-level instrument wetting errors in hurricanes. Part I: Observations. Mon. Wea. Rev., 130, 825841.

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., W. M. Gray, and P. G. Black, 2005: Buoyancy of convective vertical motions in the inner core of intense hurricanes. Part II: Case studies. Mon. Wea. Rev., 133, 209227.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1991: The theory of hurricanes. Annu. Rev. Fluid Mech., 23, 179196.

  • Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 22492269.

    • Search Google Scholar
    • Export Citation
  • Gamache, J. F., 1997: Evaluation of a fully three-dimensional variational Doppler analysis technique. Preprints, 28th Conf. on Radar Meteorology, Austin, TX, Amer. Meteor. Soc., 422–423.

    • Search Google Scholar
    • Export Citation
  • Gamache, J. F., F. D. Marks Jr., and F. Roux, 1995: Comparison of three airborne Doppler sampling techniques with airborne in situ wind observations in Hurricane Gustav (1990). J. Atmos. Oceanic Technol., 12, 171181.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances. Mon. Wea. Rev., 96, 669700.

  • Jones, S. C., 1995: The evolution of vortices in vertical shear. I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121, 821851.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 2000: The evolution of vortices in vertical shear. III: Baroclinic vortices. Quart. J. Roy. Meteor. Soc., 126, 31613185.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 2004: On the ability of dry tropical-cyclone-like vortices to withstand vertical shear. J. Atmos. Sci., 61, 114119.

  • Jorgensen, D. P., 1984: Mesoscale and convective-scale characteristics of mature hurricanes. Part II: Inner core structure of Hurricane Allen (1980). J. Atmos. Sci., 41, 12871311.

    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., M. DeMaria, J. Kaplan, C. R. Sampson, and J. M. Gross, cited 2011: Improved statistical intensity forecast models. National Hurricane Center. [Available online at http://www.nhc.noaa.gov/jht/05-07_proj.shtml.]

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and M. D. Eastin, 2001: Two distinct regimes in the kinematic and thermodynamic structure of the hurricane eye and eyewall. J. Atmos. Sci., 58, 10791090.

    • Search Google Scholar
    • Export Citation
  • Lawrence, M. B., 1999: Eastern North Pacific hurricane season of 1997. Mon. Wea. Rev., 127, 24402454.

  • Mallen, K. J., M. T. Montgomery, and B. Wang, 2005: Reexamining the near-core radial structure of the tropical cyclone primary circulation: Implications for vortex resiliency. J. Atmos. Sci., 62, 408425.

    • Search Google Scholar
    • Export Citation
  • Marks, F. D., Jr., R. A. Houze Jr., and J. F. Gamache, 1992: Dual-aircraft investigation of the inner core of Hurricane Norbert. Part I: Kinematic structure. J. Atmos. Sci., 49, 919942.

    • Search Google Scholar
    • Export Citation
  • Merrill, R. T., 1988: Environmental influences on hurricane intensification. J. Atmos. Sci., 45, 16781687.

  • Molinari, J., D. Vollaro, and K. L. Corbosiero, 2004: Tropical cyclone formation in a sheared environment: A case study. J. Atmos. Sci., 61, 24932509.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., P. Dodge, D. Vollaro, K. L. Corbosiero, and F. D. Marks Jr., 2006: Mesoscale aspects of the downshear reformation of a tropical cyclone. J. Atmos. Sci., 63, 341354.

    • Search Google Scholar
    • Export Citation
  • Neldar, J. A., and R. Mead, 1965: A simplex method for function minimization. Comput. J., 7, 308313.

  • Persing, J., and M. T. Montgomery, 2003: Hurricane superintensity. J. Atmos. Sci., 60, 23492371.

  • Reasor, P. D., 2010: Sensitivity of hurricane tilt evolution to outer-core profile. Preprints, 29th Conf. on Hurricanes and Tropical Meteorology, Tucson, AZ, Amer. Meteor. Soc., 16C.7. [Available online at http://ams.confex.com/ams/29Hurricanes/techprogram/paper_169060.htm.]

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., and M. T. Montgomery, 2001: Three-dimensional alignment and corotation of weak, TC-like vortices via linear vortex Rossby waves. J. Atmos. Sci., 58, 23062330.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, F. D. Marks Jr., and J. F. Gamache, 2000: Low-wavenumber structure and evolution of the hurricane inner core observed by airborne dual-Doppler radar. Mon. Wea. Rev., 128, 16531680.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, and L. D. Grasso, 2004: A new look at the problem of tropical cyclones in vertical shear flow: Vortex resiliency. J. Atmos. Sci., 61, 322.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. Eastin, and J. F. Gamache, 2009: Rapidly intensifying Hurricane Guillermo (1997). Part I: Low-wavenumber structure and evolution. Mon. Wea. Rev., 137, 603631.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and T. M. Smith, 1993: An improved real-time global sea surface temperature analysis. J. Climate, 6, 114119.

  • Riemer, M., and M. T. Montgomery, 2011: Simple kinematic models for the environmental interaction of tropical cyclones in vertical wind shear. Atmos. Chem. Phys., 11, 93959414.

    • Search Google Scholar
    • Export Citation
  • Riemer, M., M. T. Montgomery, and M. E. Nicholls, 2010: A new paradigm for intensity modification of tropical cyclones: Thermodynamic impact of vertical wind shear on the inflow layer. Atmos. Chem. Phys., 10, 31633188.

    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., and W. M. Frank, 2007: Interactions between simulated tropical cyclones and an environment with a variable Coriolis parameter. Mon. Wea. Rev., 135, 18891905.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., S. Chen, J. Tenerelli, and H. Willoughby, 2003: A numerical study of the impact of vertical shear on the distribution of rainfall in Hurricane Bonnie (1998). Mon. Wea. Rev., 131, 15771599.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., S. Lorsolo, P. Reasor, J. Gamache, and F. Marks, 2012: Multiscale analysis of tropical cyclone kinematic structure from airborne Doppler radar composites. Mon. Wea. Rev., 140, 7799.

    • Search Google Scholar
    • Export Citation
  • Roux, F., and F. D. Marks Jr., 1996: Extended velocity track display (EVTD): An improved processing method for Doppler radar observations of tropical cyclones. J. Atmos. Oceanic Technol., 13, 875899.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., M. T. Montgomery, and P. D. Reasor, 2002: A theory for the vertical alignment of a quasigeostrophic vortex. J. Atmos. Sci., 59, 150168.

    • Search Google Scholar
    • Export Citation
  • Simpson, R. H., and H. Riehl, 1958: Mid-tropospheric ventilation as a constraint on hurricane development and maintenance. Proc. Tech. Conf. on Hurricanes, Miami, FL, Amer. Meteor. Soc., D4.1–D4.10.

    • Search Google Scholar
    • Export Citation
  • Sitkowski, M., and G. M. Barnes, 2009: Low-level thermodynamic, kinematic, and reflectivity fields of Hurricane Guillermo (1997) during rapid intensification. Mon. Wea. Rev., 137, 645663.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and G. J. Holland, 1996: Tropical cyclone motion and evolution in vertical shear. J. Atmos. Sci., 53, 33133332.

  • Wang, Y., M. Montgomery, and B. Wang, 2004: How much vertical shear can a well-developed tropical cyclone resist? Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 100–101.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., F. D. Marks, and R. J. Feinberg, 1984: Stationary and moving convective bands in hurricanes. J. Atmos. Sci., 41, 31893211.

    • Search Google Scholar
    • Export Citation
  • Wong, M. L. M., and J. C. L. Chan, 2004: Tropical cyclone intensity in vertical wind shear. J. Atmos. Sci., 61, 18591876.

  • Wu, L., S. A. Braun, J. Halverson, and G. Heymsfield, 2006: A numerical study of Hurricane Erin (2001). Part I: Model verification and storm evolution. J. Atmos. Sci., 63, 6586.

    • Search Google Scholar
    • Export Citation
  • Zehr, R. M., 2003: Environmental vertical wind shear with Hurricane Bertha (1996). Wea. Forecasting, 18, 345356.

  • Zhang, D.-L., Y. Liu, and M. K. Yau, 2002: A multiscale numerical study of Hurricane Andrew (1992). Part V: Inner core thermodynamics. Mon. Wea. Rev., 130, 27452763.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 420 133 10
PDF Downloads 342 112 8