Surface Cold Pools in the Outer Rainbands of Tropical Storm Hanna (2008) Near Landfall

Matthew D. Eastin Department of Geography and Earth Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina

Search for other papers by Matthew D. Eastin in
Current site
Google Scholar
PubMed
Close
,
Tiffany L. Gardner Department of Geography and Earth Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina

Search for other papers by Tiffany L. Gardner in
Current site
Google Scholar
PubMed
Close
,
M. Christopher Link Department of Geography and Earth Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina

Search for other papers by M. Christopher Link in
Current site
Google Scholar
PubMed
Close
, and
Kelly C. Smith Department of Geography and Earth Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina

Search for other papers by Kelly C. Smith in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Surface mesonet observations were used to document the structure of prominent cold pools associated with two convective outer rainbands of Tropical Storm Hanna on 5 September 2008. The developing rainbands were located ~400 km north of the storm center as they crossed the Carolina coastline and passed over the mesonet. The combination of moderate CAPE, moderate low-level cross-band vertical shear, and dry midlevel air provided an environment supportive of surface cold pool formation and long-lived quasi-linear convection. Both rainbands exhibited multiple outward-tilting convective cells and discrete line segments centered within a narrow zone of nearly continuous stratiform precipitation.

The mesonet observations provided a unique along- and cross-band perspective of discrete cold pools situated beneath and behind the convection portions of each rainband. Prominent cold pools extended 40–80 km behind the rainband’s leading edge and exhibited maximum potential temperature, mixing ratio, and equivalent potential temperature deficits of 2–4 K, 1–2 g kg−1, and 4–10 K, respectively. In the cross-band direction, convergence of storm-relative inflow along the cold pool leading edge was coincident with a modest high pressure anomaly, while inflow divergence prevailed through the cold pool and rainfall maxima. Several cold pools expanded along-band while being advected downband by the prevailing cyclonic flow. Cold pool wakes were observed more than 50 km behind the rainband leading edge and up to 20 km downband from intense convection. Variations in cold pool intensity were not well correlated with convective intensity, rainfall rate, or the degree of midlevel dryness. Implications of prominent cold pools on tropical cyclone convection, size, and intensity are discussed.

Corresponding author address: Matthew D. Eastin, Department of Geography and Earth Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223. E-mail: mdeastin@uncc.edu

Abstract

Surface mesonet observations were used to document the structure of prominent cold pools associated with two convective outer rainbands of Tropical Storm Hanna on 5 September 2008. The developing rainbands were located ~400 km north of the storm center as they crossed the Carolina coastline and passed over the mesonet. The combination of moderate CAPE, moderate low-level cross-band vertical shear, and dry midlevel air provided an environment supportive of surface cold pool formation and long-lived quasi-linear convection. Both rainbands exhibited multiple outward-tilting convective cells and discrete line segments centered within a narrow zone of nearly continuous stratiform precipitation.

The mesonet observations provided a unique along- and cross-band perspective of discrete cold pools situated beneath and behind the convection portions of each rainband. Prominent cold pools extended 40–80 km behind the rainband’s leading edge and exhibited maximum potential temperature, mixing ratio, and equivalent potential temperature deficits of 2–4 K, 1–2 g kg−1, and 4–10 K, respectively. In the cross-band direction, convergence of storm-relative inflow along the cold pool leading edge was coincident with a modest high pressure anomaly, while inflow divergence prevailed through the cold pool and rainfall maxima. Several cold pools expanded along-band while being advected downband by the prevailing cyclonic flow. Cold pool wakes were observed more than 50 km behind the rainband leading edge and up to 20 km downband from intense convection. Variations in cold pool intensity were not well correlated with convective intensity, rainfall rate, or the degree of midlevel dryness. Implications of prominent cold pools on tropical cyclone convection, size, and intensity are discussed.

Corresponding author address: Matthew D. Eastin, Department of Geography and Earth Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223. E-mail: mdeastin@uncc.edu
Save
  • Baker, A. K., M. D. Parker, and M. D. Eastin, 2009: Environmental ingredients for supercells and tornadoes within Hurricane Ivan. Wea. Forecasting, 24, 223244.

    • Search Google Scholar
    • Export Citation
  • Barnes, G. M., and M. Garstang, 1982: Subcloud layer energetics of precipitating convection. Mon. Wea. Rev., 110, 102117.

  • Barnes, G. M., and K. Sieckman, 1984: The environment of fast- and slow-moving tropical mesoscale convective cloud lines. Mon. Wea. Rev., 112, 17821794.

    • Search Google Scholar
    • Export Citation
  • Barnes, G. M., and G. J. Stossmeister, 1986: The structure and decay of a rainband in Hurricane Irene (1981). Mon. Wea. Rev., 114, 25902601.

    • Search Google Scholar
    • Export Citation
  • Barnes, G. M., and M. D. Powell, 1995: Evolution of the inflow boundary layer of Hurricane Gilbert (1988). Mon. Wea. Rev., 123, 23482368.

    • Search Google Scholar
    • Export Citation
  • Barnes, G. M., E. J. Zipser, D. Jorgensen, and F. Marks Jr., 1983: Mesoscale and convective structure of a hurricane rainband. J. Atmos. Sci., 40, 21272137.

    • Search Google Scholar
    • Export Citation
  • Bogner, P. B., G. M. Barnes, and J. L. Franklin, 2000: Conditional instability and shear for six hurricanes over the Atlantic Ocean. Wea. Forecasting, 15, 192207.

    • Search Google Scholar
    • Export Citation
  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 10461053.

  • Brown, D. P., J. L. Beven, J. L. Franklin, and E. S. Blake, 2010: Atlantic hurricane season of 2008. Mon. Wea. Rev., 138, 19752001.

  • Bryan, G. H., J. C. Knievel, and M. D. Parker, 2006: A multimodel assessment of RKW theory’s relevance to squall-line characteristics. Mon. Wea. Rev., 134, 27722792.

    • Search Google Scholar
    • Export Citation
  • Cione, J. J., P. G. Black, and S. H. Houston, 2000: Surface observations in the hurricane environment. Mon. Wea. Rev., 128, 15501561.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., R. J. Trapp, and H. B. Bluestein, 2001: Tornadoes and tornadic storms. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 167–221.

    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., M. Xue, J. A. Milbrandt, and M. K. Yau, 2010: Comparison of evaporation and cold pool development between single-moment and multi-moment bulk microphysics schemes in idealized simulations of tornadic storms. Mon. Wea. Rev., 138, 11521171.

    • Search Google Scholar
    • Export Citation
  • Didlake, A. C., Jr., and R. A. Houze Jr., 2009: Convective-scale downdrafts in the principal rainband of Hurricane Katrina (2005). Mon. Wea. Rev., 137, 32693293.

    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., and C. S. Marron, 2008: A reexamination of the Jordan mean tropical sounding based on awareness of the Saharan Air Layer: Results form 2002. J. Climate, 21, 52425253.

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., and M. C. Link, 2009: Miniature supercells in an offshore outer rainband of Hurricane Ivan (2004). Mon. Wea. Rev., 137, 20812104.

    • Search Google Scholar
    • Export Citation
  • Engerer, N. A., D. J. Strensrud, and M. C. Coniglio, 2008: Surface characteristics of observed cold pools. Mon. Wea. Rev., 136, 48394849.

    • Search Google Scholar
    • Export Citation
  • Fitzjarrald, D. R., and M. Garstang, 1981a: Vertical structure of the tropical boundary layer. Mon. Wea. Rev., 109, 15121526.

  • Fitzjarrald, D. R., and M. Garstang, 1981b: Boundary-layer growth over the tropical ocean. Mon. Wea. Rev., 109, 17621772.

  • Geldmeier, M. F., and G. M. Barnes, 1997: The ‘‘footprint’’ under a decaying tropical mesoscale convective system. Mon. Wea. Rev., 125, 28792895.

    • Search Google Scholar
    • Export Citation
  • Gilmore, M. S., and L. J. Wicker, 1998: the influence of midtropospheric dryness on supercell morphology and evolution. Mon. Wea. Rev., 126, 943958.

    • Search Google Scholar
    • Export Citation
  • Goff, R. C., 1976: Vertical structure of thunderstorm outflows. Mon. Wea. Rev., 104, 14291440.

  • Hence, D. A., and R. A. Houze Jr., 2008: Kinematic structure of convective-scale elements in the rainbands of Hurricanes Katrina and Rita (2005). J. Geophys. Res., 113, D15108, doi:10.1029/2007JD009429.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., J. Halverson, E. Ritchie, J. Simpson, J. Molinari, and L. Yian, 2006: Structure of highly sheared Tropical Storm Chantal during CAMEX-4. J. Atmos. Sci., 63, 268287.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1977: Structure and dynamics of a tropical squall line system. Mon. Wea. Rev., 105, 15401567.

  • Houze, R. A., Jr., 2010: Clouds in tropical cyclones. Mon. Wea. Rev., 138, 293344.

  • Houze, R. A., Jr., and Coauthors, 2006: The Hurricane Rainband and Intensity Change Experiment: Observations and modeling of Hurricanes Katrina, Ophelia, and Rita. Bull. Amer. Meteor. Soc., 87, 15031521.

    • Search Google Scholar
    • Export Citation
  • James, R. P., and P. M. Markowski, 2010: A numerical investigation of the effects of dry air aloft on deep convection. Mon. Wea. Rev., 138, 140161.

    • Search Google Scholar
    • Export Citation
  • Jenkins, G., and D. Watts, 1968: Spectral Analysis and Its Application. Holden-Day, 525 pp.

  • Johnson, R. H., and M. E. Nicholls, 1983: A composite analysis of the boundary layer accompanying a tropical squall line. Mon. Wea. Rev., 111, 308319.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., M. A. LeMone, and B. J.-D. Jou, 1991: Precipitation and kinematic structure of an oceanic mesoscale convective system. Part I: Analysis of airborne Doppler radar data. Mon. Wea. Rev., 119, 26082637.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., M. A. LeMone, and S. B. Trier, 1997: Structure end evolution of the 22 February 1993 TOGA COARE squall line: Aircraft observations or precipitation, circulation, and surface energy fluxes. J. Atmos. Sci., 54, 19611985.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume mode and its application in convective parameterization. J. Atmos. Sci., 47, 27842802.

    • Search Google Scholar
    • Export Citation
  • Kimball, S. K., 2006: A modeling study of hurricane landfall in a dry environment. Mon. Wea. Rev., 134, 19011918.

  • Klazura, G. E., and D. A. Imy, 1993: A description of the initial set of analysis products available from the NEXRAD WSR-88D system. Bull. Amer. Meteor. Soc., 74, 12931311.

    • Search Google Scholar
    • Export Citation
  • Knupp, K. R., J. Walters, and M. Biggerstaff, 2006: Doppler profiler and radar observations of boundary layer variability during the landfall of Tropical Storm Gabrielle. J. Atmos. Sci., 63, 234251.

    • Search Google Scholar
    • Export Citation
  • Lewis, S. A., M. A. LeMone, and D. P. Jorgensen, 1998: Evolution and dynamics of a late-stage squall line on 20 February 1993 during TOGA COARE. Mon. Wea. Rev., 126, 31893212.

    • Search Google Scholar
    • Export Citation
  • Link, M. C., 2010: Climatology and radar analysis of tornadoes in tropical cyclones. M.S. thesis, University of North Carolina at Charlotte, Charlotte, NC, 176 pp.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. P. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. John Wiley and Sons, 430 pp.

  • Markowski, P. M., J. M. Straka, and E. N. Rasmussen, 2002: Direct surface thermodynamic observations within the rear-flank downdrafts of nontornadic and tornado supercells. Mon. Wea. Rev., 130, 16921721.

    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., Jr., 1991: Buoyancy and shear characteristics of hurricane–tornado environments. Mon. Wea. Rev., 119, 19541978.

  • McCaul, E. W., Jr., and C. Cohen, 2002: The impact on simulated storm structure and intensity of variations in the mixed layer and moist layer depths. Mon. Wea. Rev., 130, 17221748.

    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., Jr., D. E. Buechler, S. J. Goodman, and M. Cammarata, 2004: Doppler radar and lightning network observations of a severe outbreak of tropical cyclone tornadoes. Mon. Wea. Rev., 132, 17471763.

    • Search Google Scholar
    • Export Citation
  • Medlin, J. M., S. K. Kimball, and K. G. Blackwell, 2007: Radar and rain gauge analysis of extreme rainfall during Hurricane Danny’s (1997) landfall. Mon. Wea. Rev., 135, 18691888.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435465.

    • Search Google Scholar
    • Export Citation
  • Moon, Y., and D. S. Nolan, 2010: The dynamic response of the hurricane wind field to spiral rainband heating. J. Atmos. Sci., 67, 17791805.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1987: Changes in the low-level kinematic and thermodynamic structure of Hurricane Alicia (1983) at landfall. Mon. Wea. Rev., 115, 7599.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1990a: Boundary layer structure and dynamics in outer hurricane rainbands. Part I: Mesoscale rainfall and kinematic structure. Mon. Wea. Rev., 118, 891917.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1990b: Boundary layer structure and dynamics in outer hurricane rainbands. Part II: Downdraft modification and mixed layer recovery. Mon. Wea. Rev., 118, 918938.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., S. H. Houston, and T. Reinhold, 1996: Hurricane Andrew’s landfall in south Florida. Part I: Standardizing measurements for documentation of surface wind fields. Wea. Forecasting, 11, 304328.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., D. Bowman, D. Gilhousen, S. Murillo, N. Carrasco, and R. St. Fleur, 2004: Tropical cyclone winds at landfall: The ASOS-CMAN wind exposure documentation project. Bull. Amer. Meteor. Soc., 85, 845851.

    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., 1994: Hurricane Andrew. Weather, 49, 5161.

  • Rappaport, E. N., 2000: Loss of life in the United States associated with recent Atlantic tropical cyclones. Bull. Amer. Meteor. Soc., 81, 20652073.

    • Search Google Scholar
    • Export Citation
  • Riordan, A. J., 1990: Examination of the mesoscale features of the GALE coastal front of 24–25 January 1986. Mon. Wea. Rev., 118, 258282.

    • Search Google Scholar
    • Export Citation
  • Ryan, B. F., G. M. Barnes, and E. J. Zipser, 1992: A wide rainband in a developing tropical cyclone. Mon. Wea. Rev., 120, 431447.

  • Sitkowski, M., and G. M. Barnes, 2009: Low-level thermodynamic, kinematic, and reflectivity fields of Hurricane Guillermo during rapid intensification. Mon. Wea. Rev., 137, 645663.

    • Search Google Scholar
    • Export Citation
  • Skwira, G. D., J. L. Schroeder, and R. E. Peterson, 2005: Surface observations of landfalling hurricane rainbands. Mon. Wea. Rev., 133, 454465.

    • Search Google Scholar
    • Export Citation
  • Spratt, S. M., D. W. Sharp, P. Welsh, A. Sandrik, F. Alsheimer, and C. Paxton, 1997: A WSR-88D assessment of tropical cyclone outer rainband tornados. Wea. Forecasting, 12, 479501.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., 1982: The life cycle of thunderstorm gust fronts as viewed with Doppler radar and rawinsonde data. Mon. Wea. Rev., 110, 10601082.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 12501273.

  • Warner, C., J. Simpson, G. Van Helvoirt, D. W. Martin, D. Suchman, and G. L. Austin, 1980: Deep convection on day 261 of GATE. Mon. Wea. Rev., 108, 169194.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., and M. B. Chelmow, 1982: Objective determination of hurricane tracks from aircraft observations. Mon. Wea. Rev., 110, 12981305.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., F. D. Marks Jr., and R. J. Feinberg, 1984: Stationary and moving convective bands in asymmetric hurricanes. J. Atmos. Sci., 41, 31893211.

    • Search Google Scholar
    • Export Citation
  • Wroe, D. R., and G. M. Barnes, 2003: Inflow layer energetic of Hurricane Bonnie (1998) near landfall. Mon. Wea. Rev., 131, 16001612.

  • Xie, L., and Y.-L. Lin, 1996: A numerical study of airflow over mesoscale heat sources with application to Carolina coastal frontogenesis. Mon. Wea. Rev., 124, 28072827.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1969: The role of organized unsaturated convective downdrafts in the structure and rapid decay of an equatorial disturbance. J. Appl. Meteor., 8, 799814.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1977: Mesoscale and convective-scale downdrafts as distinct components of squall-line circulation. Mon. Wea. Rev., 105, 15681589.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., and C. Gautier, 1978: Mesoscale events within a GATE tropical depression. Mon. Wea. Rev., 106, 789805.

  • Zipser, E. J., R. J. Meitin, and M. A. LeMone, 1981: Mesoscale motion fields associated with a slowly moving GATE convective band. J. Atmos. Sci., 38, 17251750.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 292 105 9
PDF Downloads 204 84 6