• Adams-Selin, R. D., , and R. H. Johnson, 2010: Mesoscale surface pressure and temperature features associated with bow echoes. Mon. Wea. Rev., 138, 212227.

    • Search Google Scholar
    • Export Citation
  • Augustine, J. A., , and F. Caracena, 1994: Lower-tropospheric precursors to nocturnal MCS development over the central United States. Wea. Forecasting, 9, 116135.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2004: An hourly assimilation–forecast cycle: The RUC. Mon. Wea. Rev., 132, 495518.

  • Bryan, G. H., , and M. D. Parker, 2010: Observations of a squall line and its near environment using high-frequency rawinsonde launches during VORTEX2. Mon. Wea. Rev., 138, 40764097.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., , D. Ahijevych, , C. A. Davis, , and M. L. Weisman, 2004: An assessment of convective system structure, cold pool properties, and environmental shear using observations from BAMEX. Preprints, 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., 4.2. [Available online at [http://ams.confex.com/ams/pdfpapers/81470.pdf.]

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., , D. Ahijevych, , C. A. Davis, , and M. L. Weisman, 2005: Observations of cold pool properties in mesoscale convective systems during BAMEX. Preprints, 11th Conf. on Mesoscale Processes/32nd Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., JP5J.12. [Available online at http://ams.confex.com/ams/pdfpapers/96718.pdf.]

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., , J. C. Knievel, , and M. D. Parker, 2006: A multimodel assessment of RKW theory’s relevance to squall-line characteristics. Mon. Wea. Rev., 134, 27722792.

    • Search Google Scholar
    • Export Citation
  • Cohen, A. E., , M. C. Coniglio, , S. F. Corfidi, , and S. J. Corfidi, 2007: Discrimination of mesoscale convective system environments using sounding observations. Wea. Forecasting, 22, 10451062.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., , and D. J. Stensrud, 2001: Simulation of a progressive derecho using composite initial conditions. Mon. Wea. Rev., 129, 15931616.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., , D. J. Stensrud, , and M. B. Richman, 2004: An observational study of derecho-producing convective systems. Wea. Forecasting, 19, 320337.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., , D. J. Stensrud, , and L. J. Wicker, 2006: Effects of upper-level shear on the structure and maintenance of strong quasi-linear convective systems. J. Atmos. Sci., 63, 12311252.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., , H. E. Brooks, , S. J. Weiss, , and S. F. Corfidi, 2007: Forecasting the maintenance of quasi-linear mesoscale convective systems. Wea. Forecasting, 22, 556570.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., , J. W. Hwang, , and D. J. Stensrud, 2010: Environmental factors in the upscale growth and longevity of MCSs derived from Rapid Update Cycle analyses. Mon. Wea. Rev., 138, 35143539.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., , S. F. Corfidi, , and J. S. Kain, 2011: Environment and early evolution of the 8 May 2009 derecho-producing convective system. Mon. Wea. Rev., 139, 10831102.

    • Search Google Scholar
    • Export Citation
  • Corfidi, S. F., 2003: Cold pools and MCS propagation: Forecasting the motion of downwind-developing MCSs. Wea. Forecasting, 18, 9971017.

    • Search Google Scholar
    • Export Citation
  • Davis, C., and Coauthors, 2004: The Bow Echo and MCV Experiment: Observations and opportunities. Bull. Amer. Meteor. Soc., 85, 10751093.

    • Search Google Scholar
    • Export Citation
  • Engerer, N. A., , D. J. Stensrud, , and M. C. Coniglio, 2008: Surface characteristics of observed cold pools. Mon. Wea. Rev., 136, 48394849.

    • Search Google Scholar
    • Export Citation
  • Evans, J. S., , and C. A. Doswell III, 2001: Examination of derecho environments using proximity soundings. Wea. Forecasting, 16, 329342.

    • Search Google Scholar
    • Export Citation
  • Fankhauser, J. C., , G. M. Barnes, , and M. A. LeMone, 1992: Structure of a midlatitude squall line formed in strong unidirectional shear. Mon. Wea. Rev., 120, 237260.

    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., , and P. S. Dailey, 1995: The temporal behavior of numerically simulated multicell-type storms. Part I: Modes of behavior. J. Atmos. Sci., 52, 20732095.

    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., , and P.-H. Tan, 1998: The temporal behavior of numerically simulated multicell-type storms. Part II: The convective cell life cycle and cell regeneration. Mon. Wea. Rev., 126, 551577.

    • Search Google Scholar
    • Export Citation
  • French, A. J., , and M. D. Parker, 2010: The response of simulated nocturnal convective systems to a developing low-level jet. J. Atmos. Sci., 67, 33843408.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., , and G. S. Forbes, 2001: Mesoscale convective systems. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 323–357.

    • Search Google Scholar
    • Export Citation
  • Gale, J. J., , W. A. Gallus Jr., , and K. A. Jungbluth, 2002: Toward improved prediction of mesoscale convective system dissipation. Wea. Forecasting, 17, 856872.

    • Search Google Scholar
    • Export Citation
  • Grady, R. L., , and J. Verlinde, 1997: Triple-Doppler analysis of a discretely propagating, long-lived, high plains squall line. J. Atmos. Sci., 54, 27292748.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., , S. A. Rutledge, , M. I. Biggerstaff, , and B. F. Smull, 1989: Interpretation of Doppler weather radar displays of midlatitude mesoscale convective systems. Bull. Amer. Meteor. Soc., 70, 608619.

    • Search Google Scholar
    • Export Citation
  • James, R. P., , and P. M. Markowski, 2010: A numerical investigation of the effects of dry air aloft on deep convection. Mon. Wea. Rev., 138, 140161.

    • Search Google Scholar
    • Export Citation
  • Johns, R. H., , and W. D. Hirt, 1987: Derechos: Widespread convectively induced windstorms. Wea. Forecasting, 2, 3249.

  • Klemp, J. B., , and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 10701096.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1983: Large-scale conditions associated with midlatitude, mesoscale convective complexes. Mon. Wea. Rev., 111, 14751493.

    • Search Google Scholar
    • Export Citation
  • Mahoney, K. M., , G. M. Lackmann, , and M. D. Parker, 2009: The role of momentum transport in the motion of a quasi-idealized mesoscale convective system. Mon. Wea. Rev., 137, 33163338.

    • Search Google Scholar
    • Export Citation
  • Markowski, P., , and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. Wiley-Blackwell, 407 pp.

  • Miller, D. J., , and R. H. Johns, 2000: A detailed look at extreme wind damage in derecho events. Preprints, 20th Conf. on Severe Local Storms, Orlando, FL, Amer. Meteor. Soc., 52–55.

    • Search Google Scholar
    • Export Citation
  • Nolan, R. H., 1959: A radar pattern associated with tornadoes. Bull. Amer. Meteor. Soc., 40, 277279.

  • Ogura, Y., , and M.-T. Liou, 1980: The structure of a midlatitude squall line: A case study. J. Atmos. Sci., 37, 553567.

  • Parker, M. D., 2010: Relationship between system slope and updraft intensity. Mon. Wea. Rev., 138, 35723578.

  • Parker, M. D., , and R. H. Johnson, 2004: Structures and dynamics of quasi-2D mesoscale convective systems. J. Atmos. Sci., 61, 545567.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., , and J. B. Klemp, 1982: The influence of the shear-induced pressure gradient on thunderstorm motion. Mon. Wea. Rev., 110, 136151.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., , J. B. Klemp, , and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485.

  • Rotunno, R., , J. B. Klemp, , and M. L. Weisman, 1990: Comments on “A numerical investigation of the organization and interaction of the convective and stratiform regions of tropical squall lines.” J. Atmos. Sci., 47, 10311033.

    • Search Google Scholar
    • Export Citation
  • Shapiro, A., 1992: A hydrodynamical model of shear flow over semi-infinite barriers with application to density currents. J. Atmos. Sci., 49, 22932305.

    • Search Google Scholar
    • Export Citation
  • Smull, B. F., , and R. A. Houze, 1987: Rear inflow in squall lines with trailing stratiform precipitation. Mon. Wea. Rev., 115, 28692889.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., , M. C. Coniglio, , R. P. Davies-Jones, , and J. S. Evans, 2005: Comments on “‘A theory for strong long-lived squall lines’ revisited.” J. Atmos. Sci., 62, 29892996.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., , C. A. Davis, , D. A. Ahijevych, , M. L. Weisman, , and G. H. Bryan, 2006: Mechanisms supporting long-lived episodes of propagating nocturnal convection within a 7-day WRF model simulation. J. Atmos. Sci., 63, 24372461.

    • Search Google Scholar
    • Export Citation
  • UCAR, cited 2010a: Mesoscale convective systems: Squall lines and bow echoes. COMET Program, Boulder, CO. [Available online at https://www.meted.ucar.edu/training_module.php?id=18.]

    • Search Google Scholar
    • Export Citation
  • UCAR, cited 2010b: Severe convection II: Mesoscale convective systems. COMET Program, Boulder, CO. [Available online at https://www.meted.ucar.edu/training_module.php?id=155.]

    • Search Google Scholar
    • Export Citation
  • Vasiloff, S. V., and Coauthors, 2007: Improving QPE and very short term QPF: An initiative for a community-wide integrated approach. Bull. Amer. Meteor. Soc., 88, 18991911.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., 1992: The role of convectively generated rear-inflow jets on the evolution of long-lived mesoconvective systems. J. Atmos. Sci., 49, 18261847.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., 1993: The genesis of severe, long-lived bow echoes. J. Atmos. Sci., 50, 645670.

  • Weisman, M. L., 2001: Bow echoes: A tribute to T. T. Fujita. Bull. Amer. Meteor. Soc., 82, 97116.

  • Weisman, M. L., , and R. Rotunno, 2004: “A theory for strong, long-lived squall lines” revisted. J. Atmos. Sci., 61, 361382.

  • Weisman, M. L., , and R. Rotunno, 2005: Reply. J. Atmos. Sci., 62, 29973002.

  • Weisman, M. L., , J. B. Klemp, , and R. Rotunno, 1988: Structure and evolution of numerically simulated squall lines. J. Atmos. Sci., 45, 19902013.

    • Search Google Scholar
    • Export Citation
  • Wheatley, D. M., , R. J. Trapp, , and N. T. Atkins, 2006: Radar and damage analysis of severe bow echoes during BAMEX. Mon. Wea. Rev., 134, 791806.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 98 98 16
PDF Downloads 79 79 11

Views on Applying RKW Theory: An Illustration Using the 8 May 2009 Derecho-Producing Convective System

View More View Less
  • 1 NOAA/National Severe Storms Laboratory, Norman, Oklahoma
  • | 2 NOAA/Storm Prediction Center, Norman, Oklahoma
  • | 3 NOAA/National Severe Storms Laboratory, Norman, Oklahoma
© Get Permissions
Restricted access

Abstract

This work presents an analysis of the vertical wind shear during the early stages of the remarkable 8 May 2009 central U.S. derecho-producing convective system. Comments on applying Rotunno–Klemp–Weisman (RKW) theory to mesoscale convective systems (MCSs) of this type also are provided. During the formative stages of the MCS, the near-surface-based shear vectors ahead of the leading convective line varied with time, location, and depth, but the line-normal component of the shear in any layer below 3 km ahead of where the strong bow echo developed was relatively small (6–9 m s−1). Concurrently, the midlevel (3–6 km) line-normal shear component had magnitudes mostly >10 m s−1 throughout.

In a previous companion paper, it was hypothesized that an unusually strong and expansive low-level jet led to dramatic changes in instability, shear, and forced ascent over mesoscale areas. These mesoscale effects may have overwhelmed the interactions between the cold pool and low-level shear that modulate system structure in less complex environments. If cold pool–shear interactions were critical to producing such a strong system, then the extension of the line-normal shear above 3 km also appeared to be critical. It is suggested that RKW theory be applied with much caution, and that examining the shear above 3 km is important, if one wishes to explain the formation and maintenance of intense long-lived convective systems, particularly complex nocturnal systems like the one that occurred on 8 May 2009.

Corresponding author address: Dr. Michael C. Coniglio, National Severe Storms Laboratory, Rm. 2234, National Weather Center, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: michael.coniglio@noaa.gov

Abstract

This work presents an analysis of the vertical wind shear during the early stages of the remarkable 8 May 2009 central U.S. derecho-producing convective system. Comments on applying Rotunno–Klemp–Weisman (RKW) theory to mesoscale convective systems (MCSs) of this type also are provided. During the formative stages of the MCS, the near-surface-based shear vectors ahead of the leading convective line varied with time, location, and depth, but the line-normal component of the shear in any layer below 3 km ahead of where the strong bow echo developed was relatively small (6–9 m s−1). Concurrently, the midlevel (3–6 km) line-normal shear component had magnitudes mostly >10 m s−1 throughout.

In a previous companion paper, it was hypothesized that an unusually strong and expansive low-level jet led to dramatic changes in instability, shear, and forced ascent over mesoscale areas. These mesoscale effects may have overwhelmed the interactions between the cold pool and low-level shear that modulate system structure in less complex environments. If cold pool–shear interactions were critical to producing such a strong system, then the extension of the line-normal shear above 3 km also appeared to be critical. It is suggested that RKW theory be applied with much caution, and that examining the shear above 3 km is important, if one wishes to explain the formation and maintenance of intense long-lived convective systems, particularly complex nocturnal systems like the one that occurred on 8 May 2009.

Corresponding author address: Dr. Michael C. Coniglio, National Severe Storms Laboratory, Rm. 2234, National Weather Center, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: michael.coniglio@noaa.gov
Save