A Revised Scheme for the WRF Surface Layer Formulation

Pedro A. Jiménez * División de Energías Renovables, CIEMAT, Madrid, Spain, and Mesoscale and Microscale Meteorology Division, NCAR, Boulder, Colorado

Search for other papers by Pedro A. Jiménez in
Current site
Google Scholar
PubMed
Close
,
Jimy Dudhia Mesoscale and Microscale Meteorology Division, NCAR, Boulder, Colorado

Search for other papers by Jimy Dudhia in
Current site
Google Scholar
PubMed
Close
,
J. Fidel González-Rouco Departamento de Astrofísica y Ciencias de la Atmósfera, Universidad Complutense de Madrid, Madrid, Spain

Search for other papers by J. Fidel González-Rouco in
Current site
Google Scholar
PubMed
Close
,
Jorge Navarro División de Energías Renovables, CIEMAT, Madrid, Spain

Search for other papers by Jorge Navarro in
Current site
Google Scholar
PubMed
Close
,
Juan P. Montávez Departamento de Física, Universidad de Murcia, Murcia, Spain

Search for other papers by Juan P. Montávez in
Current site
Google Scholar
PubMed
Close
, and
Elena García-Bustamante ** Departamento de Astrofísica y Ciencias de la Atmósfera, Universidad Complutense de Madrid, and División de Energías Renovables, CIEMAT, Madrid, Spain

Search for other papers by Elena García-Bustamante in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study summarizes the revision performed on the surface layer formulation of the Weather Research and Forecasting (WRF) model. A first set of modifications are introduced to provide more suitable similarity functions to simulate the surface layer evolution under strong stable/unstable conditions. A second set of changes are incorporated to reduce or suppress the limits that are imposed on certain variables in order to avoid undesired effects (e.g., a lower limit in u*). The changes introduced lead to a more consistent surface layer formulation that covers the full range of atmospheric stabilities. The turbulent fluxes are more (less) efficient during the day (night) in the revised scheme and produce a sharper afternoon transition that shows the largest impacts in the planetary boundary layer meteorological variables. The most important impacts in the near-surface diagnostic variables are analyzed and compared with observations from a mesoscale network.

Corresponding author address: Pedro A. Jimenez, Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research, 3450 Mitchell Ln., Boulder, CO 80301. E-mail: jimenez@ucar.edu

Abstract

This study summarizes the revision performed on the surface layer formulation of the Weather Research and Forecasting (WRF) model. A first set of modifications are introduced to provide more suitable similarity functions to simulate the surface layer evolution under strong stable/unstable conditions. A second set of changes are incorporated to reduce or suppress the limits that are imposed on certain variables in order to avoid undesired effects (e.g., a lower limit in u*). The changes introduced lead to a more consistent surface layer formulation that covers the full range of atmospheric stabilities. The turbulent fluxes are more (less) efficient during the day (night) in the revised scheme and produce a sharper afternoon transition that shows the largest impacts in the planetary boundary layer meteorological variables. The most important impacts in the near-surface diagnostic variables are analyzed and compared with observations from a mesoscale network.

Corresponding author address: Pedro A. Jimenez, Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research, 3450 Mitchell Ln., Boulder, CO 80301. E-mail: jimenez@ucar.edu
Save
  • Acevedo, O. C., and D. R. Fitzjarrald, 2001: The early evening surface-layer transition: Temporal and spatial variability. J. Atmos. Sci., 58, 26502667.

    • Search Google Scholar
    • Export Citation
  • Angevine, W. M., and T. Mauritsen, 2008: A new scheme for stable and fair-weather cumulus boundary layers in mesoscale models. Preprints, 2008 WRF Users’ Workshop, Boulder, CO, NCAR, 3-2. [Available online at www.mmm.ucar.edu/wrf/users/workshops/WS2008/presentations/3-2.pdf.]

    • Search Google Scholar
    • Export Citation
  • Arya, S. P., 1988: Introduction to Micrometeorology. Academic Press, 307 pp.

  • Beljaars, A. C. M., 1995: The parametrization of surface fluxes in large-scale models under free convection. Quart. J. Roy. Meteor. Soc., 121, 255270.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., and A. A. M. Holtslag, 1991: Flux parametrization over land surfaces for atmospherics models. J. Appl. Meteor., 30, 327341.

    • Search Google Scholar
    • Export Citation
  • Brutsaert, W., 1992: Stability correction functions for the mean wind speed and temperature in the unstable surface layer. Geophys. Res. Lett., 19, 469472.

    • Search Google Scholar
    • Export Citation
  • Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, 1971: Flux–profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181189.

    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., and F. E. Boland, 1978: Analysis of urban-rural canopy using a surface heat flux/temperature model. J. Appl. Meteor., 17, 9981013.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface hydrology model with the Penn State/NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Wea. Rev., 129, 569586.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Y. Zhang, 2009: On the coupling strength between the land surface and the atmosphere: From viewpoint of surface exchange coefficients. Geophys. Res. Lett., 36, L10404, doi:10.1029/2009GL037980.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., K. Yang, D. Zhou, J. Qin, and X. Guo, 2010: Improving Noah land surface model in arid regions with an appropriate parameterization of the thermal roughness length. J. Hydrometeor., 11, 9951006.

    • Search Google Scholar
    • Export Citation
  • Cheng, Y., and W. Brutsaert, 2005: Flux-profile relationships for wind speed and temperature in the stable atmospheric boundary layer. Bound.-Layer Meteor., 114, 519538.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1996: A multilayer soil temperature model for MM5. Preprints, Sixth PSU/NCAR Mesoscale Model Users’ Workshop, Boulder, CO, PSU/NCAR, 49–50.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., D. Gill, K. Manning, W. Wang, and C. Bruyere, 2004: PSU/NCAR mesoscale modeling system tutorial class notes and user’s guide: MM5 modelling system version 3. PSU/NCAR, 390 pp.

    • Search Google Scholar
    • Export Citation
  • Dyer, A. J., 1967: The turbulent transport of heat and water vapor in unstable atmosphere. Quart. J. Roy. Meteor. Soc., 93, 501508.

  • Dyer, A. J., 1974: A review of flux-profile relationships. Bound.-Layer Meteor., 7, 363372.

  • Dyer, A. J., and E. F. Bradley, 1982: An alternative analysis of flux-gradient relationships at the 1976 ITCE. Bound.-Layer Meteor., 22, 319.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk parameterization of air-sea fluxes for Tropical Ocean Global Atmosphere Coupled–Ocean Atmosphere Response Experiment. J. Geophys. Res., 101 (C2), 37473764.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parametrization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591.

    • Search Google Scholar
    • Export Citation
  • García-Bustamante, E., J. F. González-Rouco, J. Navarro, E. Xoplaki, P. A. Jiménez, and J. P. Montávez, 2011: North Atlantic atmospheric circulation and surface wind in the Northeast of the Iberian Peninsula: Uncertainty and long term downscaled variability. Climate Dyn., in press.

    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., C. W. Fairall, and E. F. Bradley, 2000: Convective profile constants revisited. Bound.-Layer Meteor., 94, 495515.

  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR TN-398-1-STR, 117 pp.

    • Search Google Scholar
    • Export Citation
  • Hicks, B. B., 1976: Wind profile relationships from the Wangara experiments. Quart. J. Roy. Meteor. Soc., 102, 535551.

  • Holtslag, A. A. M., and H. A. de Bruin, 1988: Applied modelling of the nighttime surface energy balance over land. J. Appl. Meteor., 27, 689704.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341.

    • Search Google Scholar
    • Export Citation
  • Izumi, Y., 1971: Kansas 1968 field program data report. Tech. Rep. Environmental Research Paper 379, Air Force Cambridge Research Laboratories, Bedford, MA, 86 pp.

    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., 2009: Analysis of surface wind over complex terrain: A dynamical downscaling study with the WRF model. Ph.D. thesis, Universidad Complutense de Madrid, 199 pp.

    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., and J. Dudhia, 2012: Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model. J. Appl. Meteor. Climatol., 51, 300316.

    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., J. F. González-Rouco, J. P. Montávez, J. Navarro, E. García-Bustamante, and F. Valero, 2008: Surface wind regionalization in complex terrain. J. Appl. Meteor. Climatol., 47, 308325.

    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., J. F. González-Rouco, J. P. Montávez, E. García-Bustamante, and J. Navarro, 2009a: Climatology of wind patterns in the northeast of the Iberian Peninsula. Int. J. Climatol., 29, 501525.

    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., J. P. Montávez, E. García-Bustamante, J. Navarro, J. M. Jiménez-Gutiérrez, E. E. Lucio-Eceiza, and J. F. González-Rouco, 2009b: Diurnal surface wind variations over complex terrain. Fís. Tierra, 21, 7991.

    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., J. F. González-Rouco, E. García-Bustamante, J. Navarro, J. P. Montávez, J. Vilà-Guerau de Arellano, J. Dudhia, and A. Roldán, 2010a: Surface wind regionalization over complex terrain: Evaluation and analysis of a high-resolution WRF numerical simulation. J. Appl. Meteor. Climatol., 49, 268287.

    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante, 2010b: Quality assurance of surface wind observations from automated weather stations. J. Atmos. Oceanic Technol., 27, 11011122.

    • Search Google Scholar
    • Export Citation
  • Jingyong, Z., W.-C. Wang, and L. R. Leung, 2008: Contribution of land-atmosphere coupling to summer climate variability over the contiguous United States. J. Geophys. Res., 113, D22109, doi:10.1029/2008JD010136.

    • Search Google Scholar
    • Export Citation
  • Li, Y., Z. Gao, D. H. Lenschow, and F. Chen, 2010: An improved approach for parameterizing turbulent transfer coefficients in numerical models. Bound.-Layer Meteor., 137, 153165.

    • Search Google Scholar
    • Export Citation
  • Louis, J. F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187202.

  • Mahrt, L., and J. Sun, 1995: The subgrid velocity scale in the bulk aerodynamic relationship for spatially averaged scalar fluxes. Mon. Wea. Rev., 123, 30323041.

    • Search Google Scholar
    • Export Citation
  • Miguez-Macho, G., G. L. Stenchikov, and A. Robock, 2004: Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations. J. Geophys. Res., 109, D13104, doi:10.1029/2003JD004495.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turulent mixing in the atmosphere near the ground. Tr. Inst. Teor. Geofiz. Akad. Nauk SSSR, 24, 19631987.

    • Search Google Scholar
    • Export Citation
  • Obukhov, A. M., 1946: Turbulence in thermally non-homogeneous atmosphere. Tr. Inst. Teor. Geofiz. Akad. Nauk SSSR, 1, 95115.

  • Panofsky, H. A., 1963: Determination of stress from wind and temperature measurements. Quart. J. Roy. Meteor. Soc., 89, 8594.

  • Park, S.-J., S.-U. Park, C.-H. Ho, and L. Mahrt, 2009: Flux-gradient relationship of water vapor in the surface layer obtained from CASES-99 experiment. J. Geophys. Res., 114, D08115, doi:10.1029/2008JD011157.

    • Search Google Scholar
    • Export Citation
  • Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor., 9, 857861.

    • Search Google Scholar
    • Export Citation
  • Poulos, G. S., and Coauthors, 2002: CASES-99: A comprehensive investigation of the stable nocturnal boundary layer. Bull. Amer. Meteor. Soc., 83, 555581.

    • Search Google Scholar
    • Export Citation
  • Shin, H. H., and S. Hong, 2011: Intercomparison of planetary boundary-layer parametrizations in the WRF model for a single day from CASES-99. Bound.-Layer Meteor., 139, 121.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the advanced research WRF version 3. Tech. Rep. TN-475+STR, NCAR, 113 pp.

  • Sorbjan, Z., 2010: Gradient-based scales and similarity laws in the stable boundary layer. Quart. J. Roy. Meteor. Soc., 136, 12431254.

    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., and A. A. Grachev, 2010: An evaluation of the flux-gradient relationship in the stable boundary layer. Bound.-Layer Meteor., 135, 385405.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • van Ulden, A. P., and A. A. M. Holtslag, 1985: Estimation of atmospheric boundary layer parameters for diffusion applications. J. Climate Appl. Meteor., 24, 11961207.

    • Search Google Scholar
    • Export Citation
  • Webb, K., 1970: Profile relationships: The log-linear range, and extension to strong stability. Quart. J. Roy. Meteor. Soc., 96, 6790.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., C. Davis, W. Wang, K. W. Manning, and J. B. Klemp, 2008: Experiences with 0–36-h explicit convective forecast with the WRF-ARW model. Wea. Forecasting, 23, 407437.

    • Search Google Scholar
    • Export Citation
  • Wilson, D. K., 2001: An alternative function for the wind and temperature gradients in unstable surface layers. Bound.-Layer Meteor., 99, 492501.

    • Search Google Scholar
    • Export Citation
  • Zhang, D. L., and R. A. Anthes, 1982: A high-resolution model of the planetary boundary layer—Sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteor., 21, 15941609.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 12336 3592 421
PDF Downloads 7505 2197 257