• Acevedo, O. C., , and D. R. Fitzjarrald, 2001: The early evening surface-layer transition: Temporal and spatial variability. J. Atmos. Sci., 58, 26502667.

    • Search Google Scholar
    • Export Citation
  • Angevine, W. M., , and T. Mauritsen, 2008: A new scheme for stable and fair-weather cumulus boundary layers in mesoscale models. Preprints, 2008 WRF Users’ Workshop, Boulder, CO, NCAR, 3-2. [Available online at www.mmm.ucar.edu/wrf/users/workshops/WS2008/presentations/3-2.pdf.]

    • Search Google Scholar
    • Export Citation
  • Arya, S. P., 1988: Introduction to Micrometeorology. Academic Press, 307 pp.

  • Beljaars, A. C. M., 1995: The parametrization of surface fluxes in large-scale models under free convection. Quart. J. Roy. Meteor. Soc., 121, 255270.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., , and A. A. M. Holtslag, 1991: Flux parametrization over land surfaces for atmospherics models. J. Appl. Meteor., 30, 327341.

    • Search Google Scholar
    • Export Citation
  • Brutsaert, W., 1992: Stability correction functions for the mean wind speed and temperature in the unstable surface layer. Geophys. Res. Lett., 19, 469472.

    • Search Google Scholar
    • Export Citation
  • Businger, J. A., , J. C. Wyngaard, , Y. Izumi, , and E. F. Bradley, 1971: Flux–profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181189.

    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., , and F. E. Boland, 1978: Analysis of urban-rural canopy using a surface heat flux/temperature model. J. Appl. Meteor., 17, 9981013.

    • Search Google Scholar
    • Export Citation
  • Chen, F., , and J. Dudhia, 2001: Coupling an advanced land surface hydrology model with the Penn State/NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Wea. Rev., 129, 569586.

    • Search Google Scholar
    • Export Citation
  • Chen, F., , and Y. Zhang, 2009: On the coupling strength between the land surface and the atmosphere: From viewpoint of surface exchange coefficients. Geophys. Res. Lett., 36, L10404, doi:10.1029/2009GL037980.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., , K. Yang, , D. Zhou, , J. Qin, , and X. Guo, 2010: Improving Noah land surface model in arid regions with an appropriate parameterization of the thermal roughness length. J. Hydrometeor., 11, 9951006.

    • Search Google Scholar
    • Export Citation
  • Cheng, Y., , and W. Brutsaert, 2005: Flux-profile relationships for wind speed and temperature in the stable atmospheric boundary layer. Bound.-Layer Meteor., 114, 519538.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1996: A multilayer soil temperature model for MM5. Preprints, Sixth PSU/NCAR Mesoscale Model Users’ Workshop, Boulder, CO, PSU/NCAR, 49–50.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., , D. Gill, , K. Manning, , W. Wang, , and C. Bruyere, 2004: PSU/NCAR mesoscale modeling system tutorial class notes and user’s guide: MM5 modelling system version 3. PSU/NCAR, 390 pp.

    • Search Google Scholar
    • Export Citation
  • Dyer, A. J., 1967: The turbulent transport of heat and water vapor in unstable atmosphere. Quart. J. Roy. Meteor. Soc., 93, 501508.

  • Dyer, A. J., 1974: A review of flux-profile relationships. Bound.-Layer Meteor., 7, 363372.

  • Dyer, A. J., , and E. F. Bradley, 1982: An alternative analysis of flux-gradient relationships at the 1976 ITCE. Bound.-Layer Meteor., 22, 319.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., , E. F. Bradley, , D. P. Rogers, , J. B. Edson, , and G. S. Young, 1996: Bulk parameterization of air-sea fluxes for Tropical Ocean Global Atmosphere Coupled–Ocean Atmosphere Response Experiment. J. Geophys. Res., 101 (C2), 37473764.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., , E. F. Bradley, , J. E. Hare, , A. A. Grachev, , and J. B. Edson, 2003: Bulk parametrization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591.

    • Search Google Scholar
    • Export Citation
  • García-Bustamante, E., , J. F. González-Rouco, , J. Navarro, , E. Xoplaki, , P. A. Jiménez, , and J. P. Montávez, 2011: North Atlantic atmospheric circulation and surface wind in the Northeast of the Iberian Peninsula: Uncertainty and long term downscaled variability. Climate Dyn., in press.

    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., , C. W. Fairall, , and E. F. Bradley, 2000: Convective profile constants revisited. Bound.-Layer Meteor., 94, 495515.

  • Grell, G. A., , J. Dudhia, , and D. R. Stauffer, 1994: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR TN-398-1-STR, 117 pp.

    • Search Google Scholar
    • Export Citation
  • Hicks, B. B., 1976: Wind profile relationships from the Wangara experiments. Quart. J. Roy. Meteor. Soc., 102, 535551.

  • Holtslag, A. A. M., , and H. A. de Bruin, 1988: Applied modelling of the nighttime surface energy balance over land. J. Appl. Meteor., 27, 689704.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., , Y. Noh, , and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341.

    • Search Google Scholar
    • Export Citation
  • Izumi, Y., 1971: Kansas 1968 field program data report. Tech. Rep. Environmental Research Paper 379, Air Force Cambridge Research Laboratories, Bedford, MA, 86 pp.

    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., 2009: Analysis of surface wind over complex terrain: A dynamical downscaling study with the WRF model. Ph.D. thesis, Universidad Complutense de Madrid, 199 pp.

    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., , and J. Dudhia, 2012: Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model. J. Appl. Meteor. Climatol., 51, 300316.

    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., , J. F. González-Rouco, , J. P. Montávez, , J. Navarro, , E. García-Bustamante, , and F. Valero, 2008: Surface wind regionalization in complex terrain. J. Appl. Meteor. Climatol., 47, 308325.

    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., , J. F. González-Rouco, , J. P. Montávez, , E. García-Bustamante, , and J. Navarro, 2009a: Climatology of wind patterns in the northeast of the Iberian Peninsula. Int. J. Climatol., 29, 501525.

    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., , J. P. Montávez, , E. García-Bustamante, , J. Navarro, , J. M. Jiménez-Gutiérrez, , E. E. Lucio-Eceiza, , and J. F. González-Rouco, 2009b: Diurnal surface wind variations over complex terrain. Fís. Tierra, 21, 7991.

    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., , J. F. González-Rouco, , E. García-Bustamante, , J. Navarro, , J. P. Montávez, , J. Vilà-Guerau de Arellano, , J. Dudhia, , and A. Roldán, 2010a: Surface wind regionalization over complex terrain: Evaluation and analysis of a high-resolution WRF numerical simulation. J. Appl. Meteor. Climatol., 49, 268287.

    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., , J. F. González-Rouco, , J. Navarro, , J. P. Montávez, , and E. García-Bustamante, 2010b: Quality assurance of surface wind observations from automated weather stations. J. Atmos. Oceanic Technol., 27, 11011122.

    • Search Google Scholar
    • Export Citation
  • Jingyong, Z., , W.-C. Wang, , and L. R. Leung, 2008: Contribution of land-atmosphere coupling to summer climate variability over the contiguous United States. J. Geophys. Res., 113, D22109, doi:10.1029/2008JD010136.

    • Search Google Scholar
    • Export Citation
  • Li, Y., , Z. Gao, , D. H. Lenschow, , and F. Chen, 2010: An improved approach for parameterizing turbulent transfer coefficients in numerical models. Bound.-Layer Meteor., 137, 153165.

    • Search Google Scholar
    • Export Citation
  • Louis, J. F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187202.

  • Mahrt, L., , and J. Sun, 1995: The subgrid velocity scale in the bulk aerodynamic relationship for spatially averaged scalar fluxes. Mon. Wea. Rev., 123, 30323041.

    • Search Google Scholar
    • Export Citation
  • Miguez-Macho, G., , G. L. Stenchikov, , and A. Robock, 2004: Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations. J. Geophys. Res., 109, D13104, doi:10.1029/2003JD004495.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S., , and A. M. Obukhov, 1954: Basic laws of turulent mixing in the atmosphere near the ground. Tr. Inst. Teor. Geofiz. Akad. Nauk SSSR, 24, 19631987.

    • Search Google Scholar
    • Export Citation
  • Obukhov, A. M., 1946: Turbulence in thermally non-homogeneous atmosphere. Tr. Inst. Teor. Geofiz. Akad. Nauk SSSR, 1, 95115.

  • Panofsky, H. A., 1963: Determination of stress from wind and temperature measurements. Quart. J. Roy. Meteor. Soc., 89, 8594.

  • Park, S.-J., , S.-U. Park, , C.-H. Ho, , and L. Mahrt, 2009: Flux-gradient relationship of water vapor in the surface layer obtained from CASES-99 experiment. J. Geophys. Res., 114, D08115, doi:10.1029/2008JD011157.

    • Search Google Scholar
    • Export Citation
  • Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor., 9, 857861.

    • Search Google Scholar
    • Export Citation
  • Poulos, G. S., and Coauthors, 2002: CASES-99: A comprehensive investigation of the stable nocturnal boundary layer. Bull. Amer. Meteor. Soc., 83, 555581.

    • Search Google Scholar
    • Export Citation
  • Shin, H. H., , and S. Hong, 2011: Intercomparison of planetary boundary-layer parametrizations in the WRF model for a single day from CASES-99. Bound.-Layer Meteor., 139, 121.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the advanced research WRF version 3. Tech. Rep. TN-475+STR, NCAR, 113 pp.

  • Sorbjan, Z., 2010: Gradient-based scales and similarity laws in the stable boundary layer. Quart. J. Roy. Meteor. Soc., 136, 12431254.

    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., , and A. A. Grachev, 2010: An evaluation of the flux-gradient relationship in the stable boundary layer. Bound.-Layer Meteor., 135, 385405.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • van Ulden, A. P., , and A. A. M. Holtslag, 1985: Estimation of atmospheric boundary layer parameters for diffusion applications. J. Climate Appl. Meteor., 24, 11961207.

    • Search Google Scholar
    • Export Citation
  • Webb, K., 1970: Profile relationships: The log-linear range, and extension to strong stability. Quart. J. Roy. Meteor. Soc., 96, 6790.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., , C. Davis, , W. Wang, , K. W. Manning, , and J. B. Klemp, 2008: Experiences with 0–36-h explicit convective forecast with the WRF-ARW model. Wea. Forecasting, 23, 407437.

    • Search Google Scholar
    • Export Citation
  • Wilson, D. K., 2001: An alternative function for the wind and temperature gradients in unstable surface layers. Bound.-Layer Meteor., 99, 492501.

    • Search Google Scholar
    • Export Citation
  • Zhang, D. L., , and R. A. Anthes, 1982: A high-resolution model of the planetary boundary layer—Sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteor., 21, 15941609.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 753 753 155
PDF Downloads 700 700 135

A Revised Scheme for the WRF Surface Layer Formulation

View More View Less
  • 1 * División de Energías Renovables, CIEMAT, Madrid, Spain, and Mesoscale and Microscale Meteorology Division, NCAR, Boulder, Colorado
  • | 2 Mesoscale and Microscale Meteorology Division, NCAR, Boulder, Colorado
  • | 3 Departamento de Astrofísica y Ciencias de la Atmósfera, Universidad Complutense de Madrid, Madrid, Spain
  • | 4 División de Energías Renovables, CIEMAT, Madrid, Spain
  • | 5 Departamento de Física, Universidad de Murcia, Murcia, Spain
  • | 6 ** Departamento de Astrofísica y Ciencias de la Atmósfera, Universidad Complutense de Madrid, and División de Energías Renovables, CIEMAT, Madrid, Spain
© Get Permissions
Restricted access

Abstract

This study summarizes the revision performed on the surface layer formulation of the Weather Research and Forecasting (WRF) model. A first set of modifications are introduced to provide more suitable similarity functions to simulate the surface layer evolution under strong stable/unstable conditions. A second set of changes are incorporated to reduce or suppress the limits that are imposed on certain variables in order to avoid undesired effects (e.g., a lower limit in u*). The changes introduced lead to a more consistent surface layer formulation that covers the full range of atmospheric stabilities. The turbulent fluxes are more (less) efficient during the day (night) in the revised scheme and produce a sharper afternoon transition that shows the largest impacts in the planetary boundary layer meteorological variables. The most important impacts in the near-surface diagnostic variables are analyzed and compared with observations from a mesoscale network.

Corresponding author address: Pedro A. Jimenez, Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research, 3450 Mitchell Ln., Boulder, CO 80301. E-mail: jimenez@ucar.edu

Abstract

This study summarizes the revision performed on the surface layer formulation of the Weather Research and Forecasting (WRF) model. A first set of modifications are introduced to provide more suitable similarity functions to simulate the surface layer evolution under strong stable/unstable conditions. A second set of changes are incorporated to reduce or suppress the limits that are imposed on certain variables in order to avoid undesired effects (e.g., a lower limit in u*). The changes introduced lead to a more consistent surface layer formulation that covers the full range of atmospheric stabilities. The turbulent fluxes are more (less) efficient during the day (night) in the revised scheme and produce a sharper afternoon transition that shows the largest impacts in the planetary boundary layer meteorological variables. The most important impacts in the near-surface diagnostic variables are analyzed and compared with observations from a mesoscale network.

Corresponding author address: Pedro A. Jimenez, Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research, 3450 Mitchell Ln., Boulder, CO 80301. E-mail: jimenez@ucar.edu
Save