Numerical Prediction of Submesoscale Flow in the Nocturnal Stable Boundary Layer over Complex Terrain

Nelson L. Seaman Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Nelson L. Seaman in
Current site
Google Scholar
PubMed
Close
,
Brian J. Gaudet Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Brian J. Gaudet in
Current site
Google Scholar
PubMed
Close
,
David R. Stauffer Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by David R. Stauffer in
Current site
Google Scholar
PubMed
Close
,
Larry Mahrt College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by Larry Mahrt in
Current site
Google Scholar
PubMed
Close
,
Scott J. Richardson Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Scott J. Richardson in
Current site
Google Scholar
PubMed
Close
,
Jeffrey R. Zielonka Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Jeffrey R. Zielonka in
Current site
Google Scholar
PubMed
Close
, and
John C. Wyngaard Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by John C. Wyngaard in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Numerical weather prediction models often perform poorly for weakly forced, highly variable winds in nocturnal stable boundary layers (SBLs). When used as input to air-quality and dispersion models, these wind errors can lead to large errors in subsequent plume forecasts. Finer grid resolution and improved model numerics and physics can help reduce these errors. The Advanced Research Weather Research and Forecasting model (ARW-WRF) has higher-order numerics that may improve predictions of finescale winds (scales <~20 km) in nocturnal SBLs. However, better understanding of the physics controlling SBL flow is needed to take optimal advantage of advanced modeling capabilities.

To facilitate ARW-WRF evaluations, a small network of instrumented towers was deployed in the ridge-and-valley topography of central Pennsylvania (PA). Time series of local observations and model forecasts on 1.333- and 0.444-km grids were filtered to isolate deterministic lower-frequency wind components. The time-filtered SBL winds have substantially reduced root-mean-square errors and biases, compared to raw data. Subkilometer horizontal and very fine vertical resolutions are found to be important for reducing model speed and direction errors. Nonturbulent fluctuations in unfiltered, very finescale winds, parts of which may be resolvable by ARW-WRF, are shown to generate horizontal meandering in stable weakly forced conditions. These submesoscale motions include gravity waves, primarily horizontal 2D motions, and other complex signatures. Vertical structure and low-level biases of SBL variables are shown to be sensitive to parameter settings defining minimum “background” mixing in very stable conditions in two representative turbulence schemes.

Corresponding author address: Nelson Seaman, Dept. of Meteorology, The Pennsylvania State University, University Park, PA 16802. E-mail: seaman@ems.psu.edu

Abstract

Numerical weather prediction models often perform poorly for weakly forced, highly variable winds in nocturnal stable boundary layers (SBLs). When used as input to air-quality and dispersion models, these wind errors can lead to large errors in subsequent plume forecasts. Finer grid resolution and improved model numerics and physics can help reduce these errors. The Advanced Research Weather Research and Forecasting model (ARW-WRF) has higher-order numerics that may improve predictions of finescale winds (scales <~20 km) in nocturnal SBLs. However, better understanding of the physics controlling SBL flow is needed to take optimal advantage of advanced modeling capabilities.

To facilitate ARW-WRF evaluations, a small network of instrumented towers was deployed in the ridge-and-valley topography of central Pennsylvania (PA). Time series of local observations and model forecasts on 1.333- and 0.444-km grids were filtered to isolate deterministic lower-frequency wind components. The time-filtered SBL winds have substantially reduced root-mean-square errors and biases, compared to raw data. Subkilometer horizontal and very fine vertical resolutions are found to be important for reducing model speed and direction errors. Nonturbulent fluctuations in unfiltered, very finescale winds, parts of which may be resolvable by ARW-WRF, are shown to generate horizontal meandering in stable weakly forced conditions. These submesoscale motions include gravity waves, primarily horizontal 2D motions, and other complex signatures. Vertical structure and low-level biases of SBL variables are shown to be sensitive to parameter settings defining minimum “background” mixing in very stable conditions in two representative turbulence schemes.

Corresponding author address: Nelson Seaman, Dept. of Meteorology, The Pennsylvania State University, University Park, PA 16802. E-mail: seaman@ems.psu.edu
Save
  • Andre, J. C., and L. Mahrt, 1982: The nocturnal surface inversion and influence of clear-air radiative cooling. J. Atmos. Sci., 39, 864878.

    • Search Google Scholar
    • Export Citation
  • Anfossi, D., D. Oettl, G. Degrazia, and A. Goulart, 2005: An analysis of sonic anemometer observations in low wind speed conditions. Bound.-Layer Meteor., 114, 179203.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., R. K. Newsom, J. K. Lundquist, Y. L. Pichugina, R. L. Coulter, and L. Mahrt, 2002: Nocturnal low-level jet characteristics over Kansas during CASES-99. Bound.-Layer Meteor., 105, 221252.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., L. Mahrt, D. Vickers, J. Sun, B. B. Balsley, Y. L. Pichugina, and E. J. Williams, 2007: The very stable boundary layer on nights with weak low-level jets. J. Atmos. Sci., 64, 30683090.

    • Search Google Scholar
    • Export Citation
  • Belusic, D., and L. Mahrt, 2008: Estimation of length scales from mesoscale networks. Tellus, 60A, 706715.

  • Bravo, M., T. Mira, M. R. Soler, and J. Cuxart, 2008: Intercomparison and evaluation of MM5 and Meso-NH mesoscale models in the stable boundary layer. Bound.-Layer Meteor., 128, 77101.

    • Search Google Scholar
    • Export Citation
  • Brost, R. A., and J. C. Wyngaard, 1978: A model study of the stably stratified planetary boundary layer. J. Atmos. Sci., 35, 14271440.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001a: Coupling of an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001b: Coupling of an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part II: Preliminary model validation. Mon. Wea. Rev., 129, 587604.

    • Search Google Scholar
    • Export Citation
  • Cuxart, J., and M. A. Jimenez, 2007: Mixing processes in a nocturnal low-level jet: An LES study. J. Atmos. Sci., 64, 16661679.

  • Cuxart, J., and Coauthors, 2006: Single-column model intercomparison for a stably stratified atmospheric boundary layer. Bound.-Layer Meteor., 118, 273303.

    • Search Google Scholar
    • Export Citation
  • Cuxart, J., M. A. Jimenez, and D. Martinez, 2007: Nocturnal meso-beta basin and katabatic flows on a midlatitude island. Mon. Wea. Rev., 135, 918932.

    • Search Google Scholar
    • Export Citation
  • Dabberdt, W. F., and Coauthors, 2005: Multifunctional mesoscale observing networks. Bull. Amer. Meteor. Soc., 86, 961982.

  • Deng, A., and D. R. Stauffer, 2006: On improving 4-km mesoscale model simulations. J. Appl. Meteor. Climatol., 45, 361381.

  • Deng, A., N. L. Seaman, G. K. Hunter, and D. R. Stauffer, 2004: Evaluation of interregional transport using the MM5–SCIPUFF system. J. Appl. Meteor., 43, 18641886.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107.

    • Search Google Scholar
    • Export Citation
  • Elmore, K. L., D. J. Stensrud, and K. C. Crawford, 2002: Explicit cloud-scale models for operational forecasts: A note of caution. Wea. Forecasting, 17, 873884.

    • Search Google Scholar
    • Export Citation
  • Etling, D., 1990: On plume meandering under stable stratification. Atmos. Environ., 8, 19791985.

  • Fritts, D. C., C. Nappo, D. M. Riggin, B. B. Balsley, W. E. Eichinger, and R. K. Newsom, 2003: Analysis of ducted motions in the stable nocturnal boundary layer during CASES-99. J. Atmos. Sci., 60, 24502472.

    • Search Google Scholar
    • Export Citation
  • Gaudet, B. J., N. L. Seaman, D. R. Stauffer, S. Richardson, L. Mahrt, and J. C. Wyngaard, 2008: Verification of WRF-predicted mesogamma-scale spectra in the SBL using a high-frequency filter decomposition. Preprints, Ninth WRF Users’ Workshop, Boulder, CO, NCAR/MMM, P8.1. [Available online at http://www.mmm.ucar.edu/events/2008_wrfusers/index.php.]

    • Search Google Scholar
    • Export Citation
  • Gego, E., C. Hogrefe, G. Kallos, A. Voudouri, J. S. Irwin, and S. T. Rao, 2005: Examination of model predictions at different horizontal grid resolutions. Environ. Fluid Mech., 5, 6385.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: A description of the fifth generation Penn State/NCAR mesoscale model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 138 pp. [Available from NCAR Information Support Services, P.O. Box 3000, Boulder, CO 80397.]

    • Search Google Scholar
    • Export Citation
  • Ha, K.-J., and L. Mahrt, 2003: Radiative and turbulent fluxes in the nocturnal boundary layer. Tellus, 55A, 317327.

  • Hanna, S. R., 1983: Lateral turbulence intensity and plume meandering during stable conditions. J. Climate Appl. Meteor., 22, 14241430.

    • Search Google Scholar
    • Export Citation
  • Hiscox, A. L., D. R. Miller, and C. J. Nappo, 2010: Plume meander and dispersion in a stable boundary layer. J. Geophys. Res., 115, D21105, doi:10.1029/2010JD014102.

    • Search Google Scholar
    • Export Citation
  • Holland, L., J. Halley-Gotway, B. Brown, and R. Bullock, 2007: A toolkit for model evaluation. Preprints, Eighth WRF Users’ Workshop, Boulder, CO, NCAR/MMM, 3.2. [Available online at http://www.mmm.ucar.edu/events/2007_wrfusers/agenda.php.]

    • Search Google Scholar
    • Export Citation
  • Janjic, Z. I., 2002: Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP meso model. NCEP Office Note 437, 61 pp. [Available online at http://www.emc.ncep.noaa.gov/officenotes/newernotes/on437.pdf.]

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1998: Multiscale convective overturning in mesoscale convective systems: Reconciling observations, simulations, and theory. Mon. Wea. Rev., 126, 22542273.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., S. J. Weiss, J. J. Levit, M. E. Baldwin, and D. R. Bright, 2006: Examination of convection-allowing configurations of the WRF model for the prediction of severe convective weather: The SPC/NSSL Spring Program 2004. Wea. Forecasting, 21, 167181.

    • Search Google Scholar
    • Export Citation
  • Kang, S. L., and K. Davis, 2008: The effects of mesoscale surface heterogeneity on the fair-weather convective atmospheric boundary layer. J. Atmos. Sci., 65, 31973213.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., and R. Gall, 2005: The DTC Winter Forecast Experiment: Final project report. NCAR Rep., 27 pp. [Available from Development Testbed Center, NCAR Research Applications Laboratory, P.O. Box 3000, Boulder, CO 80397.]

    • Search Google Scholar
    • Export Citation
  • Kolczynski, W. C., Jr., D. R. Stauffer, S. E. Haupt, and A. Deng, 2009: Ensemble variance calibration for representing meteorological uncertainty for atmospheric transport and dispersion modeling. J. Appl. Meteor. Climatol., 48, 20012021.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1998: Stratified atmospheric boundary layers and breakdown of models. Theor. Comput. Fluid Dyn., 11, 263279.

  • Mahrt, L., 2007: Weak-wind mesoscale meandering in the nocturnal boundary layer. Environ. Fluid Mech., 7, 331347.

  • Mahrt, L., 2008: Mesoscale wind direction shifts in the stable boundary-layer. Tellus, 60A, 700705.

  • Mahrt, L., 2009: Characteristics of submeso winds in the stable boundary layer. Bound.-Layer Meteor., 130, 114.

  • Mahrt, L., and D. Vickers, 2002: Contrasting vertical structures of nocturnal boundary layers. Bound.-Layer Meteor., 105, 351363.

  • Mahrt, L., and R. Mills, 2009: Horizontal diffusion by submeso motions in the stable boundary layer. Environ. Fluid Mech., 9, 443456.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., J. Sun, W. Blumen, T. Delany, and S. Oncley, 1998: Nocturnal boundary-layer regimes. Bound.-Layer Meteor., 88, 255278.

  • Mahrt, L., C. K. Thomas, and J. H. Prueger, 2009: Space-time structure of mesoscale modes in the stable boundary layer. Quart. J. Roy. Meteor. Soc., 135, 6775.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., S. Richardson, N. Seaman, and D. Stauffer, 2010: Interaction between drainage flows, the valley cold pool and submeso motions. Tellus, 62A, 698705.

    • Search Google Scholar
    • Export Citation
  • Mass, C. F., D. Ovens, K. Westrick, and B. A. Colle, 2002: Does increasing horizontal resolution produce more skillful forecasts? Bull. Amer. Meteor. Soc., 83, 407430.

    • Search Google Scholar
    • Export Citation
  • Mestayer, P. G., and S. Anquetin, 1995: Climatology of cities. Diffusion and Transport of Pollutants in Atmospheric Mesoscale Flow Fields, A. Gyr and F.-S. Rys, Eds., Kluwer Academics, 165–189.

    • Search Google Scholar
    • Export Citation
  • Nappo, C., 2002: An Introduction to Atmospheric Gravity Waves. Academic Press, 279 pp.

  • Nastrom, G. D., and K. S. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42, 950960.

    • Search Google Scholar
    • Export Citation
  • Newsom, R. K., and R. M. Banta, 2003: Shear-flow instability in the stable nocturnal boundary layer as observed by Doppler lidar during CASES-99. J. Atmos. Sci., 60, 1633.

    • Search Google Scholar
    • Export Citation
  • Poulos, G. S., J. E. Bossert, T. B. McKee, and R. A. Pielke, 2000: The interaction of katabatic flow and mountain waves. Part I: Observations and idealized simulations. J. Atmos. Sci., 57, 19191936.

    • Search Google Scholar
    • Export Citation
  • Poulos, G. S., J. E. Bossert, T. B. McKee, and R. A. Pielke Sr., 2007: The interaction of katabatic flow and mountain waves. Part II: Case study analysis and conceptual model. J. Atmos. Sci., 64, 18571879.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 2005: Improving short-term (0–48 h) cool-season quantitative precipitation forecasting: Recommendations from a USWRP workshop. Bull. Amer. Meteor. Soc., 86, 16191632.

    • Search Google Scholar
    • Export Citation
  • Reen, B. P., D. R. Stauffer, K. J. Davis, and A. R. Desai, 2006: A case study on the effects of heterogeneous soil moisture on mesoscale boundary-layer structure in the Southern Great Plains, U.S.A. Part II: Mesoscale modeling. Bound.-Layer Meteor., 120, 275314.

    • Search Google Scholar
    • Export Citation
  • Rife, D. L., and C. A. Davis, 2005: Verification of temporal variations in mesoscale numerical wind forecasts. Mon. Wea. Rev., 133, 33683381.

    • Search Google Scholar
    • Export Citation
  • Rife, D. L., C. A. Davis, Y. Liu, and T. T. Warner, 2004: Predictability of low-level winds by mesoscale meteorological models. Mon. Wea. Rev., 132, 25532569.

    • Search Google Scholar
    • Export Citation
  • Schroeder, A. J., D. R. Stauffer, N. L. Seaman, A. Deng, A. M. Gibbs, G. K. Hunter, and G. S. Young, 2006: An automated high-resolution, rapidly relocatable meteorological nowcasting and prediction system. Mon. Wea. Rev., 134, 12371265.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032.

  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2007: A description of the advanced research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations: Part I. The basic experiment. Mon. Wea. Rev., 91, 99164.

    • Search Google Scholar
    • Export Citation
  • Smedman, A.-S., 1988: Observations of a multi-level turbulence structure in a very stable atmospheric boundary layer. Bound.-Layer Meteor., 44, 231253.

    • Search Google Scholar
    • Export Citation
  • Soderberg, S., and O. Parmhed, 2006: Numerical modeling of katabatic flow over a melting outflow glacier. Bound.-Layer Meteor., 120, 509534.

    • Search Google Scholar
    • Export Citation
  • Steeneveld, G. J., B. J. H. Van de Wiel, and A. A. M. Holtslag, 2006: Modeling the evolution of the atmospheric boundary layer coupled to the land surface for three contrasting nights in CASES-99. J. Atmos. Sci., 63, 920935.

    • Search Google Scholar
    • Export Citation
  • Steeneveld, G. J., B. J. H. Van de Wiel, and A. A. M. Holtslag, 2007: Diagnostic equations for the stable boundary layer height: Evaluation and dimensional analysis. J. Appl. Meteor. Climatol., 46, 212225.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and S. J. Weiss, 2002: Mesoscale model ensemble forecasts of the 3 May 1999 tornado outbreak. Wea. Forecasting, 17, 526543.

    • Search Google Scholar
    • Export Citation
  • Sukoriansky, S., B. Galperin, and V. Perov, 2006: A quasi-normal scale elimination model of turbulence and its application to stably stratified flows. Nonlinear Processes Geophys., 13, 922.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and Coauthors, 2002: Intermittent turbulence associated with a density current passage in the stable boundary layer. Bound.-Layer Meteor., 105, 199219.

    • Search Google Scholar
    • Export Citation
  • Sykes, R. I., S. F. Parker, D. S. Henn, and W. S. Lewellen, 1993: Numerical simulations of ANATEX tracer data using a turbulence closure model for long-range dispersion. J. Appl. Meteor., 32, 929947.

    • Search Google Scholar
    • Export Citation
  • Sykes, R. I., S. F. Parker, D. S. Henn, C. P. Cerasoli, and L. P. Santos, 1998: PC-SCIPUFF version 1.2 PD technical documentation. ARAP Rep. 718, 170 pp.

    • Search Google Scholar
    • Export Citation
  • Tennekes, H., and J. L. Lumley, 1972: A First Course in Turbulence. MIT Press, 300 pp.

  • Van de Wiel, J. H., A. F. Moene, O. K. Hartogensis, H. A. R. De Bruin, and A. A. M. Holtslag, 2003: Intermittent turbulence in the stable boundary layer over land. Part III: A classification for observations during CASES-99. J. Atmos. Sci., 60, 25092522.

    • Search Google Scholar
    • Export Citation
  • Vickers, D., and L. Mahrt, 2004: Evaluating formulations of stable boundary layer height. J. Appl. Meteor., 43, 17361749.

  • Vogelezang, D. H. P., and A. A. M. Holtslag, 1996: Evaluation and model impacts of alternative boundary-layer height formulations. Bound.-Layer Meteor., 81, 245269.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and Coauthors, 2004: An overview of the International H2O Project (IHOP_2002) and some preliminary highlights. Bull. Amer. Meteor. Soc., 85, 253277.

    • Search Google Scholar
    • Export Citation
  • Weiss, S. J., and Coauthors, 2007: The NOAA hazardous weather testbed: Collaborative testing of ensemble and convection-allowing WRF models and subsequent transfer to operations at the Storm Prediction Center. Preprints, 22nd Conf. on Weather Analysis and Forecasting/18th Conf. on Numerical Weather Prediction, Park City, UT, Amer. Meteor. Soc., 6B.4. [Available online at http://ams.confex.com/ams/pdfpapers/124772.pdf.]

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and W. C. Skamarock, 2002: Time splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130, 20882097.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 2010: Turbulence in the Atmosphere. Cambridge University Press, 393 pp.

  • Young, G., B. Gaudet, N. L. Seaman, and D. R. Stauffer, 2009: Interaction of a mountain lee wave with a basin cold pool. Preprints, 13th Conf. on Mesoscale Processes, Salt Lake City, UT, Amer. Meteor. Soc., P1.22. [Available online at http://ams.confex.com/ams/pdfpapers/155040.pdf.]

    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S., I. Esau, and A. Bakalov, 2007: Further comments on the equilibrium height of neutral and stable planetary boundary layers. Quart. J. Roy. Meteor. Soc., 133, 265271.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1544 931 47
PDF Downloads 349 50 3