Developing versus Nondeveloping Disturbances for Tropical Cyclone Formation. Part I: North Atlantic

Melinda S. Peng Marine Meteorology Division, Naval Research Laboratory, Monterey, California

Search for other papers by Melinda S. Peng in
Current site
Google Scholar
PubMed
Close
,
Bing Fu International Pacific Research Center, University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by Bing Fu in
Current site
Google Scholar
PubMed
Close
,
Tim Li International Pacific Research Center, and Department of Meteorology, University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by Tim Li in
Current site
Google Scholar
PubMed
Close
, and
Duane E. Stevens Department of Meteorology, University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by Duane E. Stevens in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study investigates the characteristic differences of tropical disturbances that eventually develop into tropical cyclones (TCs) versus those that did not, using global daily analysis fields of the Navy Operational Global Atmospheric Prediction System (NOGAPS) from the years 2003 to 2008. Time filtering is applied to the data to extract tropical waves with different frequencies. Waves with a 3–8-day period represent the synoptic-scale disturbances that are representatives as precursors of TCs, and waves with periods greater than 20 days represent the large-scale background environmental flow. Composites are made for the developing and nondeveloping synoptic-scale disturbances in a Lagrangian frame following the disturbances. Similarities and differences between them are analyzed to understand the dynamics and thermodynamics of TC genesis. Part I of this study focuses on events in the North Atlantic, while Part II focuses on the western North Pacific.

A box difference index (BDI), accounting for both the mean and variability of the individual sample, is introduced to subjectively and quantitatively identify controlling parameters measuring the differences between developing and nondeveloping disturbances. Larger amplitude of the BDI implies a greater possibility to differentiate the difference between two groups. Based on their BDI values, the following parameters are identified as the best predictors for cyclogenesis in the North Atlantic, in the order of importance: 1) water vapor content within 925 and 400 hPa, 2) rain rate, 3) sea surface temperature (SST), 4) 700-hPa maximum relative vorticity, 5) 1000–600-hPa vertical shear, 6) translational speed, and 7) vertically averaged horizontal shear. This list identifies thermodynamic variables as more important controlling parameters than dynamic variables for TC genesis in the North Atlantic. When the east and west (separated by 40°W) Atlantic are examined separately, the 925–400-hPa water vapor content remains as the most important parameter for both regions. The SST and maximum vorticity at 700 hPa have higher importance in the east Atlantic, while SST becomes less important and the vertically averaged horizontal shear and horizontal divergence become more important in the west Atlantic.

School of Ocean and Earth Science and Technology Contribution Number 8553 and International Pacific Research Center Contribution Number 852.

Corresponding author address: Tim Li, International Pacific Research Center, 1680 East-West Rd., POST 409B, Honolulu, HI 96822. E-mail: timli@hawaii.edu

Abstract

This study investigates the characteristic differences of tropical disturbances that eventually develop into tropical cyclones (TCs) versus those that did not, using global daily analysis fields of the Navy Operational Global Atmospheric Prediction System (NOGAPS) from the years 2003 to 2008. Time filtering is applied to the data to extract tropical waves with different frequencies. Waves with a 3–8-day period represent the synoptic-scale disturbances that are representatives as precursors of TCs, and waves with periods greater than 20 days represent the large-scale background environmental flow. Composites are made for the developing and nondeveloping synoptic-scale disturbances in a Lagrangian frame following the disturbances. Similarities and differences between them are analyzed to understand the dynamics and thermodynamics of TC genesis. Part I of this study focuses on events in the North Atlantic, while Part II focuses on the western North Pacific.

A box difference index (BDI), accounting for both the mean and variability of the individual sample, is introduced to subjectively and quantitatively identify controlling parameters measuring the differences between developing and nondeveloping disturbances. Larger amplitude of the BDI implies a greater possibility to differentiate the difference between two groups. Based on their BDI values, the following parameters are identified as the best predictors for cyclogenesis in the North Atlantic, in the order of importance: 1) water vapor content within 925 and 400 hPa, 2) rain rate, 3) sea surface temperature (SST), 4) 700-hPa maximum relative vorticity, 5) 1000–600-hPa vertical shear, 6) translational speed, and 7) vertically averaged horizontal shear. This list identifies thermodynamic variables as more important controlling parameters than dynamic variables for TC genesis in the North Atlantic. When the east and west (separated by 40°W) Atlantic are examined separately, the 925–400-hPa water vapor content remains as the most important parameter for both regions. The SST and maximum vorticity at 700 hPa have higher importance in the east Atlantic, while SST becomes less important and the vertically averaged horizontal shear and horizontal divergence become more important in the west Atlantic.

School of Ocean and Earth Science and Technology Contribution Number 8553 and International Pacific Research Center Contribution Number 852.

Corresponding author address: Tim Li, International Pacific Research Center, 1680 East-West Rd., POST 409B, Honolulu, HI 96822. E-mail: timli@hawaii.edu
Save
  • Anthes, R. A., Ed., 1982: Tropical Cyclones: Their Evolution, Structure and Effects. Meteor. Mongr., No. 41, Amer. Meteor. Soc., 208 pp.

    • Search Google Scholar
    • Export Citation
  • Avila, L. A., 1991: Atlantic tropical systems of 1990. Mon. Wea. Rev., 119, 20272033.

  • Avila, L. A., and R. J. Pasch, 1995: Atlantic tropical systems of 1993. Mon. Wea. Rev., 123, 887896.

  • Baker, N. L., T. F. Hogan, W. F. Campbell, R. L. Pauley, and S. D. Swadley, 2005: The impact of AMSU-A radiance assimilation in the U.S. Navy’s Operational Global Atmospheric Prediction System (NOGAPS). NRL Memo. Rep. NRL/MR/7530-05-8836, 18 pp. [Available from the Naval Research Laboratory, 7 Grace Hopper Ave., Monterey, CA 93943-5502.]

    • Search Google Scholar
    • Export Citation
  • Berry, G., C. Thorncroft, and T. Hewson, 2007: African easterly waves during 2004—Analysis using objective techniques. Mon. Wea. Rev., 135, 12511267.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., 2010: Reevaluating the role of the Saharan air layer in Atlantic tropical cyclogenesis and evolution. Mon. Wea. Rev., 138, 20072037.

    • Search Google Scholar
    • Export Citation
  • Burpee, R., 1972: The origin and structure of easterly waves in the lower troposphere of North Africa. J. Atmos. Sci., 29, 7790.

  • Camargo, S. J., K. A. Emanuel, and A. H. Sobel, 2007: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20, 48194834.

    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., 1969: Synoptic histories of three African disturbances that developed into Atlantic hurricanes. Mon. Wea. Rev., 97, 256276.

    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., and J. M. Prospero, 1972: The large-scale movement of Saharan air outbreaks over the northern equatorial Atlantic. J. Appl. Meteor., 11, 283297.

    • Search Google Scholar
    • Export Citation
  • Christiano, J., and T. J. Fitzgerald, 2003: The band pass filter. Int. Econ. Rev., 44, 435465.

  • DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 20762088.

  • DeMaria, M., J. A. Knaff, and B. H. Connell, 2001: A tropical cyclone genesis parameter for the tropical Atlantic. Wea. Forecasting, 16, 219233.

    • Search Google Scholar
    • Export Citation
  • Diedhiou, A., S. Janicot, A. Vitard, P. Felice, and H. Laurent, 1999: Easterly wave regimes and associated convection over West Africa and tropical Atlantic: Results from the NCEP/NCAR and ECMWF reanalysis. Climate Dyn., 15, 795882.

    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., and C. S. Velden, 2004: The impact of the Saharan Air Layer on Atlantic tropical cyclone activity. Bull. Amer. Meteor. Soc., 85, 353365.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., M. T. Montgomery, and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys., 9, 55875646.

    • Search Google Scholar
    • Export Citation
  • Erickson, S. L., 1977: Comparison of developing vs. non-developing tropical disturbances. Colorado State University Department of Atmospheric Science Paper 274, 89 pp.

    • Search Google Scholar
    • Export Citation
  • Frank, N. L., 1972: Atlantic tropical systems of 1971. Mon. Wea. Rev., 100, 268275.

  • Frank, W. M., and P. E. Roundy, 2006: The role of tropical waves in tropical cyclogenesis. Mon. Wea. Rev., 134, 23972417.

  • Franklin, J. L., 2008: 2007 National Hurricane Center forecast verification report. NOAA/NWS/NCEP/Tropical Prediction Center Rep., 68 pp.

    • Search Google Scholar
    • Export Citation
  • Fu, B., T. Li, M. S. Peng, and F. Weng, 2007: Analysis of tropical cyclogenesis in the western North Pacific for 2000 and 2001. Wea. Forecasting, 22, 763780.

    • Search Google Scholar
    • Export Citation
  • Fu, B., M. S. Peng, T. Li, and D. E. Stevens, 2012: Developing versus nondeveloping disturbances for tropical cyclone formation. Part II: Western North Pacific. Mon. Wea. Rev., 140, 10671080.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: A global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700.

  • Gray, W. M., 1975: Tropical cyclone genesis. Colorado State University Department of Atmospheric Science Paper 234, 121 pp.

  • Grist, J. P., 2002: Easterly waves over Africa. Part I: The seasonal cycle and contrasts between wet and dry years. Mon. Wea. Rev., 130, 197211.

    • Search Google Scholar
    • Export Citation
  • Hall, N. M. J., G. N. Kiladis, and C. D. Thorncroft, 2006: Three-dimensional structure and dynamics of African easterly waves. Part II: Dynamical modes. J. Atmos. Sci., 63, 22312245.

    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., B. J. Hoskins, J. Boyle, and C. Thorncroft, 2003: A comparison of recent reanalysis datasets using objective feature tracking: Storm tracks and tropical easterly waves. Mon. Wea. Rev., 131, 20122037.

    • Search Google Scholar
    • Export Citation
  • Hopsch, S. B., C. D. Thorncroft, K. Hodges, and A. Aiyyer, 2007: West African storm tracks and their relationship to Atlantic tropical cyclones. J. Climate, 20, 24682483.

    • Search Google Scholar
    • Export Citation
  • Hopsch, S. B., C. D. Thorncroft, and K. R. Tyle, 2010: Analysis of African easterly wave structures and their role in influencing tropical cyclogenesis. Mon. Wea. Rev., 138, 13991419.

    • Search Google Scholar
    • Export Citation
  • Hsieh, J. S., and K. H. Cook, 2007: A study of the energetics of African easterly waves using a regional climate model. J. Atmos. Sci., 64, 421440.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., 1993: A climatology of intense (or major) Atlantic hurricanes. Mon. Wea. Rev., 121, 17031713.

  • Landsea, C. W., G. D. Bell, W. M. Gray, and S. B. Goldenberg, 1998: The extremely active 1995 Atlantic hurricane season: Environmental conditions and verification of seasonal forecasts. Mon. Wea. Rev., 126, 11741193.

    • Search Google Scholar
    • Export Citation
  • Lau, K. H., and N. C. Lau, 1990: Observed structure and propagation characteristics of tropical summertime synoptic scale disturbances. Mon. Wea. Rev., 118, 18881913.

    • Search Google Scholar
    • Export Citation
  • McBride, J. L., and R. Zehr, 1981: Observational analysis of tropical cyclone formation. Part II: Comparison of non-developing versus developing systems. J. Atmos. Sci., 38, 11321151.

    • Search Google Scholar
    • Export Citation
  • Norquist, D. C., E. E. Recker, and R. J. Reed, 1977: The energetics of African wave disturbances as observed during phase III of GATE. Mon. Wea. Rev., 105, 334342.

    • Search Google Scholar
    • Export Citation
  • Paradis, D., J.-P. Lafore, J.-L. Redelsperger, and V. Balaji, 1995: African easterly waves and convection. Part I: Linear simulations. J. Atmos. Sci., 52, 16571679.

    • Search Google Scholar
    • Export Citation
  • Peng, M. S., J. A. Ridout, and T. F. Hogan, 2004: Recent modifications of the Emanuel convective scheme in the Naval Operational Global Atmospheric Prediction System. Mon. Wea. Rev., 132, 12541268.

    • Search Google Scholar
    • Export Citation
  • Rennick, M. A., 1976: The generation of African waves. J. Atmos. Sci., 33, 19551969.

  • Simmons, A. J., 1977: A note on the instability of the African easterly jet. J. Atmos. Sci., 34, 16701674.

  • Simpson, R. H., N. Frank, D. Shideler, and H. M. Johnson, 1968: Atlantic tropical disturbances, 1967. Mon. Wea. Rev., 96, 251259.

  • Tam, C.-Y., and T. Li, 2006: The origin and dispersion characteristics of the observed tropical summertime synoptic-scale waves over the western Pacific. Mon. Wea. Rev., 134, 16301646.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C., and K. Hodges, 2001: African easterly wave variability and its relationship to Atlantic tropical cyclone activity. J. Climate, 14, 11661179.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C., and B. J. Hoskins, 1994a: An idealized study of African easterly waves. Part I: A linear view. Quart. J. Roy. Meteor. Soc., 120, 953982.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C., and B. J. Hoskins, 1994b: An idealized study of African easterly waves. Part II: A nonlinear view. Quart. J. Roy. Meteor. Soc., 120, 9831015.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C., N. M. J. Hall, and G. N. Kiladis, 2008: Three-dimensional structure and dynamics of African easterly waves. Part III: Genesis. J. Atmos. Sci., 65, 35963607.

    • Search Google Scholar
    • Export Citation
  • Wallace, J., and C. P. Chang, 1969: Spectrum analysis of large-scale wave disturbances in the tropical lower troposphere. J. Atmos. Sci., 26, 10101025.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and J. C. L. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate, 15, 16431658.

    • Search Google Scholar
    • Export Citation
  • Wu, L., S. A. Braun, J. J. Qu, and X. Hao, 2006: Simulating the formation of Hurricane Isabel (2003) with AIRS data. Geophys. Res. Lett., 33, L04804, doi:10.1029/2005GL024665.

    • Search Google Scholar
    • Export Citation
  • Zehr, R. M., 1992: Tropical cyclogenesis in the western North Pacific. NOAA Tech. Rep. NESDIS 61, 181 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1095 386 54
PDF Downloads 1146 241 44