Operator-Split Runge–Kutta–Rosenbrock Methods for Nonhydrostatic Atmospheric Models

Paul Ullrich Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Ann Arbor, Michigan

Search for other papers by Paul Ullrich in
Current site
Google Scholar
PubMed
Close
and
Christiane Jablonowski Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Ann Arbor, Michigan

Search for other papers by Christiane Jablonowski in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper presents a new approach for discretizing the nonhydrostatic Euler equations in Cartesian geometry using an operator-split time-stepping strategy and unstaggered upwind finite-volume model formulation. Following the method of lines, a spatial discretization of the governing equations leads to a set of coupled nonlinear ordinary differential equations. In general, explicit time-stepping methods cannot be applied directly to these equations because the large aspect ratio between the horizontal and vertical grid spacing leads to a stringent restriction on the time step to maintain numerical stability. Instead, an A-stable linearly implicit Rosenbrock method for evolving the vertical components of the equations coupled to a traditional explicit Runge–Kutta formula in the horizontal is proposed. Up to third-order temporal accuracy is achieved by carefully interleaving the explicit and linearly implicit steps. The time step for the resulting Runge–Kutta–Rosenbrock–type semi-implicit method is then restricted only by the grid spacing and wave speed in the horizontal. The high-order finite-volume model is tested against a series of atmospheric flow problems to verify accuracy and consistency. The results of these tests reveal that this method is accurate, stable, and applicable to a wide range of atmospheric flows and scales.

Corresponding author address: Paul Ullrich, Department of Atmospheric, Oceanic and Space Sciences, Space Research Building, University of Michigan, 2455 Hayward St., Ann Arbor, MI 48109. E-mail: paullric@umich.edu

Abstract

This paper presents a new approach for discretizing the nonhydrostatic Euler equations in Cartesian geometry using an operator-split time-stepping strategy and unstaggered upwind finite-volume model formulation. Following the method of lines, a spatial discretization of the governing equations leads to a set of coupled nonlinear ordinary differential equations. In general, explicit time-stepping methods cannot be applied directly to these equations because the large aspect ratio between the horizontal and vertical grid spacing leads to a stringent restriction on the time step to maintain numerical stability. Instead, an A-stable linearly implicit Rosenbrock method for evolving the vertical components of the equations coupled to a traditional explicit Runge–Kutta formula in the horizontal is proposed. Up to third-order temporal accuracy is achieved by carefully interleaving the explicit and linearly implicit steps. The time step for the resulting Runge–Kutta–Rosenbrock–type semi-implicit method is then restricted only by the grid spacing and wave speed in the horizontal. The high-order finite-volume model is tested against a series of atmospheric flow problems to verify accuracy and consistency. The results of these tests reveal that this method is accurate, stable, and applicable to a wide range of atmospheric flows and scales.

Corresponding author address: Paul Ullrich, Department of Atmospheric, Oceanic and Space Sciences, Space Research Building, University of Michigan, 2455 Hayward St., Ann Arbor, MI 48109. E-mail: paullric@umich.edu
Save
  • Adcroft, A., C. Hill, and J. Marshall, 1997: Representation of topography by shaved cells in a height coordinate ocean model. Mon. Wea. Rev., 125, 22932315.

    • Search Google Scholar
    • Export Citation
  • Ahmad, N., and J. Lindeman, 2007: Euler solutions using flux-based wave decomposition. Int. J. Numer. Methods Fluids, 54, 4772, doi:10.1002/fld.1392.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and C. S. Konor, 2009: Unification of the anelastic and quasi-hydrostatic systems of equations. Mon. Wea. Rev., 137, 710726.

    • Search Google Scholar
    • Export Citation
  • Ascher, U. M., S. J. Ruuth, and R. J. Spiteri, 1997: Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. Appl. Numer. Math., 25 (2–3), 151167, doi:10.1016/S0168-9274(97)00056-1.

    • Search Google Scholar
    • Export Citation
  • Barad, M., and P. Colella, 2005: A fourth-order accurate local refinement method for Poisson’s equation. J. Comput. Phys., 209, 118, doi:10.1016/j.jcp.2005.02.027.

    • Search Google Scholar
    • Export Citation
  • Bonaventura, L., 2000: A semi-implicit semi-Lagrangian scheme using the height coordinate for a nonhydrostatic and fully elastic model of atmospheric flows. J. Comput. Phys., 158, 186213, doi:10.1006/jcph.1999.6414.

    • Search Google Scholar
    • Export Citation
  • Crouzeix, M., 1980: Une méthode multipas implicite-explicite pour l’approximation des équations d’évolution paraboliques. Numerische Math., 35, 257276, doi:10.1007/BF01396412.

    • Search Google Scholar
    • Export Citation
  • Davies, T., A. Staniforth, N. Wood, and J. Thuburn, 2003: Validity of anelastic and other equation sets as inferred from normal-mode analysis. Quart. J. Roy. Meteor. Soc., 129, 27612775, doi:10.1256/qj.02.1951.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1993: A nonhydrostatic version of the Penn State NCAR Mesoscale Model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121, 14931513.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1989: Improving the anelastic approximation. J. Atmos. Sci., 46, 14531461.

  • Durran, D. R., 1999: Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. Springer-Verlag, 489 pp.

  • Gadd, A. J., 1978: A split explicit integration scheme for numerical weather prediction. Quart. J. Roy. Meteor. Soc., 104, 569582, doi:10.1002/qj.49710444103.

    • Search Google Scholar
    • Export Citation
  • Gal-Chen, T., and R. C. J. Somerville, 1975: On the use of a coordinate transformation for the solution of the Navier-Stokes equations. J. Comput. Phys., 17, 209228, doi:10.1016/0021-9991(75)90037-6.

    • Search Google Scholar
    • Export Citation
  • Giraldo, F. X., 2005: Semi-implicit time-integrators for a scalable spectral element atmospheric model. Quart. J. Roy. Meteor. Soc., 131, 24312454, doi:10.1256/qj.03.218.

    • Search Google Scholar
    • Export Citation
  • Giraldo, F. X., and M. Restelli, 2008: A study of spectral element and discontinuous Galerkin methods for the Navier–Stokes equations in nonhydrostatic mesoscale atmo spheric modeling: Equation sets and test cases. J. Comput. Phys., 227, 38493877, doi:10.1016/j.jcp.2007.12.009.

    • Search Google Scholar
    • Export Citation
  • Gottlieb, S., C.-W. Shu, and E. Tadmor, 2001: Strong stability-preserving high-order time discretization methods. SIAM Rev., 43, 89112, doi:10.1137/S003614450036757X.

    • Search Google Scholar
    • Export Citation
  • Jablonowski, C., and D. L. Williamson, 2006: A baroclinic instabilitiy test case for atmospheric model dynamical cores. Quart. J. Roy. Meteor. Soc., 132, 29432975.

    • Search Google Scholar
    • Export Citation
  • Jameson, A., W. Schmidt, and E. Turkel, 1981: Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes. Proc. 14th Fluid and Plasma Dynamics Conf., Palo Alto, CA, AIAA, 15 pp.

  • Jebens, S., O. Knoth, and R. Weiner, 2011: Partially implicit peer methods for the compressible Euler equations. J. Comput. Phys., 230, 49554974, doi:10.1016/j.jcp.2011.03.015.

    • Search Google Scholar
    • Export Citation
  • Klein, R., U. Achatz, D. Bresch, O. M. Knio, and P. K. Smolarkiewicz, 2010: Regime of validity of soundproof atmospheric flow models. J. Atmos. Sci., 67, 32263237.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., W. C. Skamarock, and O. Fuhrer, 2003: Numerical consistency of metric terms in terrain-following coordinates. Mon. Wea. Rev., 131, 12291239.

    • Search Google Scholar
    • Export Citation
  • Kwizak, M., and A. J. Robert, 1971: A semi-implicit scheme for grid point atmospheric models of the primitive equations. Mon. Wea. Rev., 99, 3236.

    • Search Google Scholar
    • Export Citation
  • Lanser, D., J. G. Blom, and J. G. Verwer, 2001: Time integration of the shallow water equations in spherical geometry. J. Comput. Phys., 171, 373393, doi:10.1006/jcph.2001.6802.

    • Search Google Scholar
    • Export Citation
  • Lin, S., 2004: A “vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 22932307.

  • Liou, M.-S., 2006: A sequel to AUSM. Part II: AUSM+-up for all speeds. J. Comput. Phys., 214, 137170, doi:10.1016/j.jcp.2005.09.020.

  • McCorquodale, P., and P. Colella, 2011: A high-order finite-volume method for conservation laws on locally refined grids. Commun. Appl. Math. Comput. Sci., 6, 125.

    • Search Google Scholar
    • Export Citation
  • Norman, M. R., R. D. Nair, and F. H. M. Semazzi, 2011: A low communication and large time step explicit finite-volume solver for non-hydrostatic atmospheric dynamics. J. Comput. Phys., 230, 15671584, doi:10.1016/j.jcp.2010.11.022.

    • Search Google Scholar
    • Export Citation
  • Nørsett, S. P., and A. Wolfbrandt, 1979: Order conditions for Rosenbrock type methods. Numerische Math., 32, 115, doi:10.1007/BF01397646.

    • Search Google Scholar
    • Export Citation
  • Ogura, Y., and N. A. Phillips, 1962: Scale analysis of deep and shallow convection in the atmosphere. J. Atmos. Sci., 19, 173179.

  • Restelli, M., and F. X. Giraldo, 2009: A conservative discontinuous Galerkin semi-implicit formulation for the Navier–Stokes equations in nonhydrostatic mesoscale modeling. SIAM J. Sci. Comput., 31, 22312257, doi:10.1137/070708470.

    • Search Google Scholar
    • Export Citation
  • Robert, A., 1993: Bubble convection experiments with a semi-implicit formulation of the Euler equations. J. Atmos. Sci., 50, 18651873.

    • Search Google Scholar
    • Export Citation
  • Roe, P. L., 1981: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys., 43, 357372, doi:10.1016/0021-9991(81)90128-5.

    • Search Google Scholar
    • Export Citation
  • Rosenbrock, H., 1963: Some general implicit processes for the numerical solution of differential equations. Comput. J., 5, 329330.

  • Rusanov, V., 1961: Calculation of intersection of non-steady shock waves with obstacles. J. Comput. Math. Phys. USSR, 1, 267279.

  • Sandu, A., J. G. Verwer, J. G. Blom, E. J. Spee, G. R. Carmichael, and F. A. Potra, 1997: Benchmarking stiff ode solvers for atmospheric chemistry problems II: Rosenbrock solvers. Atmos. Environ., 31, 34593472, doi:10.1016/S1352-2310(97)83212-8.

    • Search Google Scholar
    • Export Citation
  • Schär, C., D. Leuenberger, O. Fuhrer, D. Lüthi, and C. Girard, 2002: A new terrain-following vertical coordinate formulation for atmospheric prediction models. Mon. Wea. Rev., 130, 24592480.

    • Search Google Scholar
    • Export Citation
  • Schiesser, W. E., 1991: The Numerical Method of Lines: Integration of Partial Differential Equations. Academic Press, 326 pp.

  • Schiesser, W. E., and G. W. Griffiths, 2009: A Compendium of Partial Differential Equation Models: Method of Lines Analysis with Matlab. Cambridge University Press, 490 pp.

  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, doi:10.1016/j.jcp.2007.01.037.

    • Search Google Scholar
    • Export Citation
  • St-Cyr, A., and D. Neckels, 2009: A fully implicit Jacobian-free high-order discontinuous Galerkin mesoscale flow solver. Proc. Ninth Int. Conf. on Computational Science, Baton Rouge, LA, Intel, 243–252.

  • Straka, J. M., R. B. Wilhelmson, L. J. Wicker, J. R. Anderson, and K. K. Droegemeier, 1993: Numerical solutions of a non-linear density current: A benchmark solution and comparisons. Int. J. Numer. Methods Fluids, 17, 122, doi:10.1002/fld.1650170103.

    • Search Google Scholar
    • Export Citation
  • Taylor, M. A., J. Edwards, and A. St Cyr, 2008: Petascale atmospheric models for the Community Climate System Model: New developments and evaluation of scalable dynamical cores. J. Phys. Conf. Ser., 125, 012023, doi:10.1088/1742-6596/125/1/012023.

    • Search Google Scholar
    • Export Citation
  • Ullrich, P. A., C. J. Jablonowski, and B. L. van Leer, 2010: High-order finite-volume models for the shallow-water equations on the sphere. J. Comput. Phys., 229, 61046134.

    • Search Google Scholar
    • Export Citation
  • Varah, J. M., 1980: Stability restrictions on second order, three level finite difference schemes for parabolic equations. SIAM J. Numer. Anal., 17, 300309, doi:10.1137/0717025.

    • Search Google Scholar
    • Export Citation
  • Verwer, J. G., E. J. Spee, J. G. Blom, and W. Hundsdorfer, 1999: A second-order Rosenbrock method applied to photochemical dispersion problems. SIAM J. Sci. Comput., 20, 14561480, doi:10.1137/S1064827597326651.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., 2008: Equivalent finite volume and Eulerian spectral transform horizontal resolutions established from aqua-planet simulations. Tellus, 60A, 839847, doi:10.1111/j.1600-0870.2008.00340.x.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 912 261 26
PDF Downloads 690 177 21