Warm-Core Formation in Tropical Storm Humberto (2001)

Klaus Dolling University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by Klaus Dolling in
Current site
Google Scholar
PubMed
Close
and
Gary M. Barnes University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by Gary M. Barnes in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

At 0600 UTC 22 September 2001, Humberto was a tropical depression with a minimum central pressure of 1010 hPa. Twelve hours later, when the first global positioning system dropwindsondes (GPS sondes) were jettisoned, Humberto’s minimum central pressure was 1000 hPa and it had attained tropical storm strength. Thirty GPS sondes, radar from the WP-3D, and in situ aircraft measurements are utilized to observe thermodynamic structures in Humberto and their relationship to stratiform and convective elements during the early stage of the formation of an eye.

The analysis of Tropical Storm Humberto offers a new view of the pre-wind-induced surface heat exchange (pre-WISHE) stage of tropical cyclone evolution. Humberto contained a mesoscale convective vortex (MCV) similar to observations of other developing tropical systems. The MCV advects the exhaust from deep convection in the form of an anvil cyclonically over the low-level circulation center. On the trailing edge of the anvil an area of mesoscale descent induces dry adiabatic warming in the lower troposphere. The nascent warm core at low levels causes the initial drop in pressure at the surface and acts to cap the boundary layer (BL). As BL air flows into the nascent eye, the energy content increases until the energy is released from under the cap on the down shear side of the warm core in the form of vigorous cumulonimbi, which become the nascent eyewall. This series of events show one possible path in which a mesoscale convective system may evolve into a warm-cored structure and intensify into a hurricane.

Corresponding author address: K. Dolling, Department of Meteorology, University of Hawaii at Manoa, 2525 Correa Rd., Honolulu, HI 96822. E-mail: dolling@hawaii.edu

Abstract

At 0600 UTC 22 September 2001, Humberto was a tropical depression with a minimum central pressure of 1010 hPa. Twelve hours later, when the first global positioning system dropwindsondes (GPS sondes) were jettisoned, Humberto’s minimum central pressure was 1000 hPa and it had attained tropical storm strength. Thirty GPS sondes, radar from the WP-3D, and in situ aircraft measurements are utilized to observe thermodynamic structures in Humberto and their relationship to stratiform and convective elements during the early stage of the formation of an eye.

The analysis of Tropical Storm Humberto offers a new view of the pre-wind-induced surface heat exchange (pre-WISHE) stage of tropical cyclone evolution. Humberto contained a mesoscale convective vortex (MCV) similar to observations of other developing tropical systems. The MCV advects the exhaust from deep convection in the form of an anvil cyclonically over the low-level circulation center. On the trailing edge of the anvil an area of mesoscale descent induces dry adiabatic warming in the lower troposphere. The nascent warm core at low levels causes the initial drop in pressure at the surface and acts to cap the boundary layer (BL). As BL air flows into the nascent eye, the energy content increases until the energy is released from under the cap on the down shear side of the warm core in the form of vigorous cumulonimbi, which become the nascent eyewall. This series of events show one possible path in which a mesoscale convective system may evolve into a warm-cored structure and intensify into a hurricane.

Corresponding author address: K. Dolling, Department of Meteorology, University of Hawaii at Manoa, 2525 Correa Rd., Honolulu, HI 96822. E-mail: dolling@hawaii.edu
Save
  • Aberson, S. D., M. L. Black, R. A. Black, R. W. Burpee, J. J. Cione, C. W. Landsea, and F. D. Marks, 2006: Thirty years of tropical cyclone research with the NOAA P-3 aircraft. Bull. Amer. Meteor. Soc., 87, 10391055.

    • Search Google Scholar
    • Export Citation
  • Barnes, G. M., 2008: Atypical thermodynamic profiles in hurricanes. Mon. Wea. Rev., 136, 631643.

  • Beven, J. L., S. R. Stewart, M. B. Lawrence, L. A. Avila, J. L. Franklin, and R. J. Pasch, 2003: Annual summary—Atlantic season of 2001. Mon. Wea. Rev., 131, 14541484.

    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 1997: The genesis of Hurricane Guillermo: TEXMEX analyses and a modeling study. Mon. Wea. Rev., 125, 26622682.

    • Search Google Scholar
    • Export Citation
  • Bogner, P. B., G. M. Barnes, and J. L. Franklin, 2000: Conditional instability and shear for six hurricanes over the Atlantic Ocean. Wea. Forecasting, 15, 192207.

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., and F. S. Sanders, 1981: The Johnstown flood of July 1977: A long-lived convective system. J. Atmos. Sci., 38, 16161642.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., 1990: Evolution and structure of the 6–7 May 1985 mesoscale convective system and associated vortex. Mon. Wea. Rev., 118, 109127.

    • Search Google Scholar
    • Export Citation
  • Byers, H. R., 1944: General Meteorology. McGraw-Hill, 645 pp.

  • Chen, S. C., and W. M. Frank, 1993: A numerical study of the genesis of extratropical convective mesovortices. Part I: Evolution and dynamics. J. Atmos. Sci., 50, 24012426.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and L. F. Bosart, 2001: Numerical simulations of the genesis of Hurricane Diana (1984). Part I: Control simulation. Mon. Wea. Rev., 129, 18591881.

    • Search Google Scholar
    • Export Citation
  • Dolling, K., 2010: The evolution of Hurricane Humberto (2001). Ph.D. dissertation, Dept. of Meteorology, University of Hawaii at Manoa, Honolulu, HI, 180 pp.

  • Dolling, K., and G. M. Barnes, 2012: The creation of a high equivalent potential temperature reservoir in Tropical Storm Humberto (2001) and its possible role in storm deepening. Mon Wea Rev., 140, 492505.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585604.

    • Search Google Scholar
    • Export Citation
  • Enagonio, J., and M. T. Montgomery, 2001: Tropical cyclogenesis via convectively forced vortex Rossby waves in a shallow water primitive equation model. J. Atmos. Sci., 58, 685705.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and S. Chen, 1991: Simulations of vortex formation in convective weather systems. Preprints, 19th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 241–244.

  • Fritsch, F. N., and R. E. Carlson, 1980: Monotone piecewise cubic interpolation. SIAM J. Numer. Anal., 17, 238246.

  • Gamache, J. F., and R. A. Houze Jr., 1982: Mesoscale air motions associated with a tropical squall line. Mon. Wea. Rev., 110, 118135.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700.

  • Gray, W. M., 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over the Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society, 155–218.

  • Harr, P. A., M. S. Kalafsky, and R. L. Elsberry, 1996: Environmental conditions prior to formation of a midget tropical cyclone during TCM-93. Mon. Wea. Rev., 124, 16931710.

    • Search Google Scholar
    • Export Citation
  • Hawkins, H. F., and S. M. Imbembo, 1976: The structure of a small, intense hurricane: Inez, 1966. Mon. Wea. Rev., 104, 418442.

  • Hendricks, E. A., M. T. Montgomery, and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61, 12091232.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., E. Ritchie, J. Simpson, J. Molinari, and L. Tian, 2006: Structure of highly sheared tropical storm Chantal during CAMEX-4. J. Atmos. Sci., 63, 268287.

    • Search Google Scholar
    • Export Citation
  • Hock, T. F., and J. L. Franklin, 1999: The NCAR GPS dropwindsonde. Bull. Amer. Meteor. Soc., 80, 407420.

  • Houze, R. A., Jr., 1977: Structure and dynamics of a tropical squall-line system. Mon. Wea. Rev., 105, 15401567.

  • Hubert, L. F., 1955: A case study of hurricane formation. J. Meteor., 12, 486492.

  • Jorgensen, D. P., 1984: Mesoscale and convective-scale characteristics of mature hurricanes. Part I: General observations by research aircraft. J. Atmos. Sci., 41, 12681285.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., and P. T. Willis, 1982: A Z–R relationship for hurricanes. J. Appl. Meteor., 21, 356366.

  • Kakar, R., M. Goodman, R. Hood, and A. Guillory, 2006: Overview of the convection and moisture experiment (CAMEX). J. Atmos. Sci., 63, 518.

    • Search Google Scholar
    • Export Citation
  • Kleinschmidt, E., Jr., 1951: Grundlagen einer theorie des tropicschen zyklonen (The underlying principles of a theory of tropical cyclones). Arch. Meteor. Geophys. Bioklimatol., 4A, 5372.

    • Search Google Scholar
    • Export Citation
  • Leary, C. A., 1980: Temperature and humidity profiles in mesoscale unsaturated downdrafts. J. Atmos. Sci., 37, 10051012.

  • Leary, C. A., and E. N. Rappaport, 1987: The life cycle and internal structure of a mesoscale convective complex. Mon. Wea. Rev., 115, 15031527.

    • Search Google Scholar
    • Export Citation
  • Malkus, J. S., and H. Riehl, 1960: On the dynamics and energy transformation in steady-state hurricanes. Tellus, 12, 120.

  • Marks, F. D., Jr., 1985: Evolution of the structure of precipitation in Hurricane Allen. Mon. Wea. Rev., 113, 909930.

  • Martin, C., 2007: ASPEN user manual. NCAR, 61 pp. [Available online at http://www.eol.ucar.edu/isf/facilities/software/aspen/Aspen%20Manual.pdf.]

  • McBride, J. L. and R. Zehr, 1981: Observational analysis of tropical cyclone formation. Part II: Comparison of non-developing versus developing systems. J. Atmos. Sci., 38, 11321151.

    • Search Google Scholar
    • Export Citation
  • Menard, R. D. and J. M. Fritsch, 1989: A mesoscale convective complex-generated inertially stable warm core vortex. Mon. Wea. Rev., 117, 12371261.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., D. Vollaro, and K. L. Corbosiero, 2004: Tropical cyclone formation in a sheared environment: A case study. J. Atmos. Sci., 61, 24932509.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and B. F. Farrell, 1993: Tropical cyclone formation. J. Atmos. Sci., 50, 285310.

  • Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex Rossby waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435465.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and C. Lu, 1997: Free waves on barotropic vortices. Part I: Eigenmode structure. J. Atmos. Sci., 54, 18681885.

  • Montgomery, M. T., and J. Enagonio, 1998: Tropical cyclogenesis via convectively forced vortex Rossby waves in a three-dimensional quasi-geostrophic model. J. Atmos. Sci., 55, 31763207.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and J. L. Franklin, 1998: An assessment of the balance approximation in hurricanes. J. Atmos. Sci., 55, 21932200.

  • Montgomery, M. T., M. E. Nicholls, T. A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355386.

    • Search Google Scholar
    • Export Citation
  • Ooyama, K. V., 1964: A dynamical model for the study of tropical cyclone development. Geofis. Int., 4, 187198.

  • Reasor, P. D., M. T. Montgomery, and L. F. Bosart, 2005: Mesoscale observations of the genesis of Hurricane Dolly (1996). J. Atmos. Sci., 62, 31513171.

    • Search Google Scholar
    • Export Citation
  • Riehl, H., 1948: On the formation of typhoons. J. Meteor., 5, 247264.

  • Ritchie, E. A., and G. J. Holland, 1997: Scale interactions during the formation of Typhoon Irving. Mon. Wea. Rev., 125, 13771396.

  • Ritchie, E. A., and R. L. Elsberry, 2001: Simulations of the transformation stage of the extratropical transition of tropical cyclones. Mon. Wea. Rev., 129, 14621480.

    • Search Google Scholar
    • Export Citation
  • Rodgers, F. R., and J. M. Fritsch, 2001: Surface cyclogenesis from convectively driven amplification of midlevel mesoscale convective vortices. Mon. Wea. Rev., 129, 605637.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a non-hydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542561.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., E. Ritchie, G. J. Holland, J. Halverson, and S. Stewart, 1997: Mesoscale interactions in tropical cyclone genesis. Mon. Wea. Rev., 125, 26432661.

    • Search Google Scholar
    • Export Citation
  • Stossmeister, G. J., and G. M. Barnes, 1992: The development of a second circulation center within Tropical Storm Isabel (1985). Mon. Wea. Rev., 120, 685697.

    • Search Google Scholar
    • Export Citation
  • Velasco, I., and J. M. Fritsch, 1987: Mesoscale convective complexes in the Americas. J. Geophys. Res., 92, 95919613.

  • Vigh, J. L., 2010: Formation of the hurricane eye. Ph.D. dissertation, Dept. of Atmospheric Science, Colorado State University, Fort Collins, CO, 538 pp.

  • Wang, Z., M. T. Montgomery, and T. J. Dunkerton, 2010a: Genesis of pre–Hurricane Felix (2007). Part I: The role of the easterly wave critical layer. J. Atmos. Sci., 67, 17111729.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., M. T. Montgomery, and T. J. Dunkerton, 2010b: Genesis of pre–Hurricane Felix (2007). Part II: Warm core formation, precipitation evolution, and predictability. J. Atmos. Sci., 67, 17301744.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., and M. B. Chelmow, 1982: Objective determination of hurricane tracks from aircraft observations. Mon. Wea. Rev., 110, 12981305.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., 1961: A detailed analysis of typhoon formation. J. Meteor. Soc. Japan, 39, 187214.

  • Zipser, E. J., 1977: Mesoscale and convective-scale downdrafts as distinct components of squall-line structure. Mon. Wea. Rev., 105, 15681589.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 222 89 9
PDF Downloads 158 60 7