Sensitivity of Midlatitude Storm Intensification to Perturbations in the Sea Surface Temperature near the Gulf Stream

James F. Booth Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by James F. Booth in
Current site
Google Scholar
PubMed
Close
,
LuAnne Thompson School of Oceanography, University of Washington, Seattle, Washington

Search for other papers by LuAnne Thompson in
Current site
Google Scholar
PubMed
Close
,
Jérôme Patoux Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Jérôme Patoux in
Current site
Google Scholar
PubMed
Close
, and
Kathryn A. Kelly Applied Physics Laboratory, University of Washington, Seattle, Washington

Search for other papers by Kathryn A. Kelly in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Gulf Stream region is a primary location for midlatitude storm cyclogenesis and growth. However, the influence of sea surface temperature (SST) on storms in the region is still under question, particularly after a storm has developed. Using the Weather Research and Forecasting (WRF) model, a storm that intensified as it transited northward across the Gulf Stream is simulated multiple times using different SST boundary conditions. These experiments test the storm response to changes in both the absolute value of the SST and the meridional SST gradient. Across the different simulations, the storm strength increases monotonically with the magnitude of the SST perturbations, even when the perturbations weaken the SST gradient. The storm response to the SST perturbations is driven by the latent heat release in the storm warm conveyor belt (WCB). During the late stages of development, the surface fluxes under the storm warm sector regulate the supply of heat and moisture to the WCB. This allows the surface fluxes to govern late-stage intensification and control the storm SST sensitivity. The storm warm front also responds to the SST perturbations; however, the response is independent of that of the storm central pressure. These modeling results suggest that the SST beneath the storm can have just as important a role as the SST gradients in local forcing of the storm.

Current affiliation: NASA Goddard Institute for Space Studies, Department of Applied Physics and Applied Mathematics, University of Columbia, New York, New York.

Corresponding author address: James F. Booth, NASA Goddard Institute for Space Studies, Department of Applied Physics and Applied Mathematics, University of Columbia, 200 S. W. Mudd Building, MC 4701, 500 W 120th St., New York, NY 10027. E-mail: jfb2130@columbia.edu

Abstract

The Gulf Stream region is a primary location for midlatitude storm cyclogenesis and growth. However, the influence of sea surface temperature (SST) on storms in the region is still under question, particularly after a storm has developed. Using the Weather Research and Forecasting (WRF) model, a storm that intensified as it transited northward across the Gulf Stream is simulated multiple times using different SST boundary conditions. These experiments test the storm response to changes in both the absolute value of the SST and the meridional SST gradient. Across the different simulations, the storm strength increases monotonically with the magnitude of the SST perturbations, even when the perturbations weaken the SST gradient. The storm response to the SST perturbations is driven by the latent heat release in the storm warm conveyor belt (WCB). During the late stages of development, the surface fluxes under the storm warm sector regulate the supply of heat and moisture to the WCB. This allows the surface fluxes to govern late-stage intensification and control the storm SST sensitivity. The storm warm front also responds to the SST perturbations; however, the response is independent of that of the storm central pressure. These modeling results suggest that the SST beneath the storm can have just as important a role as the SST gradients in local forcing of the storm.

Current affiliation: NASA Goddard Institute for Space Studies, Department of Applied Physics and Applied Mathematics, University of Columbia, New York, New York.

Corresponding author address: James F. Booth, NASA Goddard Institute for Space Studies, Department of Applied Physics and Applied Mathematics, University of Columbia, 200 S. W. Mudd Building, MC 4701, 500 W 120th St., New York, NY 10027. E-mail: jfb2130@columbia.edu
Save
  • Adamson, D. S., S. E. Belcher, B. J. Hoskins, and R. S. Plant, 2006: Boundary layer friction in midlatitude cyclones. Quart. J. Roy. Meteor. Soc., 132, 101124.

    • Search Google Scholar
    • Export Citation
  • Ahmadi-Givi, F., G. C. Graig, and R. S. Plant, 2004: The dynamics of a midlatitude cyclone with very strong latent-heat release. Quart. J. Roy. Meteor. Soc., 130, 295323.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. E., J. S. Kain, and M. P. Kay, 2002: Properties of the convection scheme in NCEP’s Eta Model that affect forecast sounding interpretation. Wea. Forecasting, 17, 10631079.

    • Search Google Scholar
    • Export Citation
  • Beare, R. J., 2007: Boundary layer mechanisms in extratropical cyclones. Quart. J. Roy. Meteor. Soc., 133, 503515.

  • Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112, 677691.

    • Search Google Scholar
    • Export Citation
  • Boutle, I. A., R. J. Beare, S. E. Belcher, and R. S. Plant, 2007: A note on boundary-layer friction in baroclinic cyclones. Quart. J. Roy. Meteor. Soc., 133, 21372141.

    • Search Google Scholar
    • Export Citation
  • Boutle, I. A., R. J. Beare, S. E. Belcher, A. R. Brown, and R. S. Plant, 2010: The moist boundary layer under a mid-latitude weather system. Bound.-Layer Meteor., 134, 367386.

    • Search Google Scholar
    • Export Citation
  • Boutle, I. A., S. E. Belcher, and R. S. Plant, 2011: Moisture transport in mid-latitude cyclones. Quart. J. Roy. Meteor. Soc., 137, 360367.

    • Search Google Scholar
    • Export Citation
  • Brayshaw, D. J., B. Hoskins, and M. Blackburn, 2009: The basic ingredients of the North Atlantic storm track. Part I: Land–sea contrast and orography. J. Atmos. Sci., 66, 25392558.

    • Search Google Scholar
    • Export Citation
  • Brennan, M. J., and G. M. Lackmann, 2005: The influence of incipient latent heat release on the precipitation distribution of the 24–25 January 2000 U.S. East Coast cyclone. Mon. Wea. Rev., 133, 19131937.

    • Search Google Scholar
    • Export Citation
  • Businger, S., T. M. Graziano, M. L. Kaplan, and R. A. Rozumalski, 2005: Cold-air cyclogenesis along the Gulf-Stream front: Investigation of diabatic impacts on cyclone development, frontal structure and track. Meteor. Atmos. Phys., 88, 6590.

    • Search Google Scholar
    • Export Citation
  • Cione, J. J., S. Raman, and L. J. Pietrafesa, 1993: The effect of Gulf Stream-induced baroclinicity on the U.S. East Coast winter cyclones. Mon. Wea. Rev., 121, 421430.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and K. A. Emanuel, 1991: Potential vorticity diagnostics of cyclogenesis. Mon. Wea. Rev., 119, 19291953.

  • Fantini, M., 1990: The influence of heat and moisture fluxes from the ocean on the development of baroclinic waves. J. Atmos. Sci., 47, 840855.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., and R. Wood, 2007: Precipitation and cloud structure in midlatitude clouds. J. Climate, 20, 233254; Corrigendum, 20, 52085210.

    • Search Google Scholar
    • Export Citation
  • Gallus, W. A., Jr., 1999: Eta simulations of three extreme precipitation events: Sensitivity to resolution and convective parameterization. Wea. Forecasting., 14, 405426.

    • Search Google Scholar
    • Export Citation
  • Giordani, H., and G. Caniaux, 2001: Sensitivity of cyclogenesis to sea surface temperature in the northwestern Atlantic. Mon. Wea. Rev., 129, 12731295.

    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., and R. D. Torn, 2008: Ensemble synoptic analysis. Synoptic–Dynamic Meteorology and Weather Analysis and Forecasting: A Tribute to Fred Sanders, Meteor. Monogr., No. 55, Amer. Meteor. Soc., 147–161.

  • Hewson, T. D., 1998: Objective fronts. Meteor. Appl., 5, 3765.

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and K. Hodges, 2002: New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59, 10411061.

  • Jacobs, N. A., G. M. Lackmann, and S. Raman, 2005: The combined effects of Gulf Stream–induced baroclinicity and upper-level vorticity on U.S. East Coast extratropical cyclones. Mon. Wea. Rev., 133, 24942501.

    • Search Google Scholar
    • Export Citation
  • Jacobs, N. A., S. Raman, G. M. Lackmann, and P. P. Childs Jr., 2007: The influence of the Gulf Stream induced SST gradients on the U.S. East Coast winter storm of 24–25 January 2000. Int. J. Remote Sens., 29, 61456174.

    • Search Google Scholar
    • Export Citation
  • Janjic, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945.

    • Search Google Scholar
    • Export Citation
  • Jung, T., and F. Vitart, 2006: Short-range and medium-range weather forecasting in the extratropics during wintertime with and without an interactive ocean. Mon. Wea. Rev., 134, 19721986.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 24, Amer. Meteor. Soc., 165–170.

  • Kelly, K. A., R. J. Small, R. M. Samelson, B. Qiu, T. M. Joyce, Y.-O. Kwon, and M. F. Cronin, 2010: Western boundary currents and frontal air–sea interaction: Gulf Stream and Kuroshio Extension. J. Climate, 23, 56445667.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, B. P. Briegleb, D. L. Williamson, and P. J. Rasch, 1996: Description of the NCAR Community Climate Model (CCM3). NCAR Tech. Note NCAR/TN-4201-STR, 152 pp.

  • Kuo, Y.-H., R. Reed, and S. Low-Nam, 1991: Effects of surface energy fluxes during the early development and rapid intensification stages of seven explosive cyclones in the western Atlantic. Mon. Wea. Rev., 119, 457476.

    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., R. Reed, and Y. Lio, 1996: The ERICA IOP5 storm. Part III: Mesoscale cyclogenesis and precipitation parameterization. Mon. Wea. Rev., 124, 14091434.

    • Search Google Scholar
    • Export Citation
  • Long, Z., W. Perrie, J. Gyakum, R. Laprise, and D. Caya, 2009: Scenario changes in the climatology of winter midlatitude cyclone activity over eastern North America and the Northwest Atlantic. J. Geophys. Res., 114, D12111, doi:10.1029/2008JD010869.

    • Search Google Scholar
    • Export Citation
  • Martin, J. E., 2006: Mid-Latitude Atmospheric Dynamics. Wiley, 336 pp.

  • Minobe, S., A. Kuwano-Yoshida, N. Komori, S. P. Xie, and R. J. Small, 2008: Influence of the Gulf Stream on the troposphere. Nature, 452, 206210.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., T. Sampe, Y. Tanimoto, and A. Shimpo, 2004: Observed associations among storm tracks, jet streams and midlatitude oceanic fronts. Earth’s Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 329–345.

  • Nakamura, M., and S. Yamane, 2009: Dominant anomaly patterns in the near-surface baroclinicity and accompanying anomalies in the atmosphere and oceans. Part I: North Atlantic basin. J. Climate, 22, 880904.

    • Search Google Scholar
    • Export Citation
  • Petterssen, S., and S. J. Smebye, 1971: On the development of extratropical cyclones. Quart. J. Roy. Meteor. Soc., 97, 457482.

  • Plant, R. S., G. C. Craig, and S. L. Gray, 2003: On a threefold classification of extratropical cyclogenesis. Quart. J. Roy. Meteor. Soc., 129, 29893012.

    • Search Google Scholar
    • Export Citation
  • Pomroy, H. R., and A. J. Thorpe, 2000: The evolution and dynamical role of reduced upper-tropospheric potential vorticity in Intense Observing Period One of FASTEX. Mon. Wea. Rev., 128, 18171834.

    • Search Google Scholar
    • Export Citation
  • Posselt, D. J., and J. E. Martin, 2004: The effect of latent heat release on the evolution of a warm occluded thermal structure. Mon. Wea. Rev., 132, 578599.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., G. Grell, and Y.-H. Kuo, 1993a: The ERICA IOP 5 storm. Part I: Analysis and simulation. Mon. Wea. Rev., 121, 15771594.

  • Reed, R. J., G. Grell, and Y.-H. Kuo, 1993b: The ERICA IOP 5 storm. Part II: Sensitivity tests and further diagnosis based on model output. Mon. Wea. Rev., 121, 15951612.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and T. M. Smith, 1995: A high-resolution global sea surface temperature climatology. J. Climate, 8, 15711583.

  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625.

    • Search Google Scholar
    • Export Citation
  • Sanders, F., and J. R. Gyakum, 1980: Synoptic-dynamic climatology of the “bomb.” Mon. Wea. Rev., 108, 15891606.

  • Semmler, T., S. Varghese, R. McGrath, P. Nolan, S. Wang, P. Lynch, and C. O’Dowd, 2008: Regional model simulation of North Atlantic cyclones: Present climate and idealized response to increase sea surface temperature. J. Geophys. Res., 113, D02107, doi:10.1029/2006JD008213.

    • Search Google Scholar
    • Export Citation
  • Shaman, J., R. M. Samelson, and E. Skyllingstad, 2010: Air–sea fluxes over the Gulf Stream region: Atmospheric controls and trends. J. Climate, 23, 26512670.

    • Search Google Scholar
    • Export Citation
  • Sinclair, V. A., S. L. Gray, and S. E. Belcher, 2008: Boundary-layer ventilation by baroclinic life cycles. Quart. J. Roy. Meteor. Soc., 134, 14091424.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the advanced research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 125 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.]

  • Stensrud, D. J., 2007: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, 478 pp.

  • Stoelinga, M. T., 1996: A potential vorticity–based study on the role of diabatic heating and friction in a numerically simulated baroclinic cyclone. Mon. Wea. Rev., 124, 849874.

    • Search Google Scholar
    • Export Citation
  • Stoelinga, M. T., 2003: Comments on “The evolution and dynamical role of reduced upper-tropospheric potential vorticity in Intensive Observing Period One of FASTEX.” Mon. Wea. Rev., 131, 19441947.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • Vukovich, F. M., J. W. Dunn, and B. W. Crissman, 1991: Aspects of the evolution of the marine boundary layer during the cold-air outbreaks off the southeast coast of the United States. Mon. Wea. Rev., 119, 22522278.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., and H. C. Davies, 1997: A Lagrangian based analysis of extratropical cyclones: The method and some applications. Quart. J. Roy. Meteor. Soc., 123, 467490.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 727 300 29
PDF Downloads 555 211 27