Effects of Surface Exchange Coefficients and Turbulence Length Scales on the Intensity and Structure of Numerically Simulated Hurricanes

George H. Bryan National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by George H. Bryan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Using numerical simulations, this study examines the sensitivity of hurricane intensity and structure to changes in the surface exchange coefficients and to changes in the length scales of a turbulence parameterization. Compared to other recent articles on the topic, this study uses higher vertical resolution, more values for the turbulence length scales, a different initial environment (including higher sea surface temperature), a broader specification of surface exchange coefficients, a more realistic microphysics scheme, and a set of three-dimensional simulations. The primary conclusions from a recent study by Bryan and Rotunno are all upheld: maximum intensity is strongly affected by the horizontal turbulence length scale lh but not by the vertical turbulence length scale lυ, and the ratio of surface exchange coefficients for enthalpy and momentum, Ck/Cd, has less effect on maximum wind speed than suggested by an often-cited theoretical model. The model output is further evaluated against various metrics of hurricane intensity and structure from recent observational studies, including maximum wind speed, minimum pressure, surface wind–pressure relationships, height of maximum wind, and surface inflow angle. The model settings lh ≈ 1000 m, lυ ≈ 50 m, and Ck/Cd ≈ 0.5 produce the most reasonable match to the observational studies. This article also reconciles a recent controversy about the likely value of Ck/Cd in high wind speeds by noting that simulations in a study by Emanuel used relatively large horizontal diffusion and low sea surface temperature. The model in this study can produce category 5 hurricanes with Ck/Cd as low as 0.25.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: George H. Bryan, NCAR, 3090 Center Green Drive, Boulder, CO 80301. E-mail: gbryan@ucar.edu

Abstract

Using numerical simulations, this study examines the sensitivity of hurricane intensity and structure to changes in the surface exchange coefficients and to changes in the length scales of a turbulence parameterization. Compared to other recent articles on the topic, this study uses higher vertical resolution, more values for the turbulence length scales, a different initial environment (including higher sea surface temperature), a broader specification of surface exchange coefficients, a more realistic microphysics scheme, and a set of three-dimensional simulations. The primary conclusions from a recent study by Bryan and Rotunno are all upheld: maximum intensity is strongly affected by the horizontal turbulence length scale lh but not by the vertical turbulence length scale lυ, and the ratio of surface exchange coefficients for enthalpy and momentum, Ck/Cd, has less effect on maximum wind speed than suggested by an often-cited theoretical model. The model output is further evaluated against various metrics of hurricane intensity and structure from recent observational studies, including maximum wind speed, minimum pressure, surface wind–pressure relationships, height of maximum wind, and surface inflow angle. The model settings lh ≈ 1000 m, lυ ≈ 50 m, and Ck/Cd ≈ 0.5 produce the most reasonable match to the observational studies. This article also reconciles a recent controversy about the likely value of Ck/Cd in high wind speeds by noting that simulations in a study by Emanuel used relatively large horizontal diffusion and low sea surface temperature. The model in this study can produce category 5 hurricanes with Ck/Cd as low as 0.25.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: George H. Bryan, NCAR, 3090 Center Green Drive, Boulder, CO 80301. E-mail: gbryan@ucar.edu
Save
  • Andreas, E. L, 2011: Fallacies of the enthalpy transfer coefficient over the ocean in high winds. J. Atmos. Sci., 68, 14351445.

  • Bell, M. M., 2010: Air-sea enthalpy and momentum exchange at major hurricane wind speeds. Ph.D. dissertation, Naval Postgraduate School, 133 pp.

  • Bell, M. M., and M. T. Montgomery, 2008: Observed structure, evolution, and potential intensity of category 5 Hurricane Isabel (2003) from 12 to 14 September. Mon. Wea. Rev., 136, 20232046.

    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 65, 233240.

  • Bister, M., and K. A. Emanuel, 2002: Low frequency variability of tropical cyclone potential intensity 1. Interannual to interdecadal variability. J. Geophys. Res., 107, 4801, doi:10.1029/2001JD000776.

    • Search Google Scholar
    • Export Citation
  • Black, P. G., and Coauthors, 2007: Air–sea exchange in hurricanes: Synthesis of observations from the Coupled Boundary Layer Air–Sea Transfer Experiment. Bull. Amer. Meteor. Soc., 88, 357374.

    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1962: The vertical distribution of wind and turbulent exchange in a neutral atmosphere. J. Geophys. Res., 67, 30953102.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and R. Rotunno, 2009a: Evaluation of an analytical model for the maximum intensity of tropical cyclones. J. Atmos. Sci., 66, 30423060.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and R. Rotunno, 2009b: The maximum intensity of tropical cyclones in axisymmetric numerical model simulations. Mon. Wea. Rev., 137, 17701789.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., R. Rotunno, and Y. Chen, 2010: The effects of turbulence on hurricane intensity. Preprints, 29th Conf. on Hurricanes and Tropical Meteorology, Tucson, AZ, Amer. Meteor. Soc., 8C.7. [Available online at http://ams.confex.com/ams/29Hurricanes/techprogram/paper_167282.htm.]

  • Cione, J. J., P. G. Black, and S. H. Houston, 2000: Surface observations in the hurricane environment. Mon. Wea. Rev., 128, 15501561.

    • Search Google Scholar
    • Export Citation
  • Dean, L., K. A. Emanuel, and D. R. Chavas, 2009: On the size distribution of Atlantic tropical cyclones. Geophys. Res. Lett., 36, L14803, doi:10.1029/2009GL039051.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1994: Sea surface temperature and the maximum intensity of Atlantic tropical cyclones. J. Climate, 7, 13241334.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, doi:10.1029/2004GL019460.

    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., J. A. Zhang, J. R. French, C. McCormick, and P. G. Black, 2007: Turbulent fluxes in the hurricane boundary layer. Part II: Latent heat flux. J. Atmos. Sci., 64, 11031115.

    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., 2011: Rewriting the climatology of the tropical North Atlantic and Caribbean Sea atmosphere. J. Climate, 24, 893908.

  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585604.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2004: Tropical cyclone energetics and structure. Atmospheric Turbulence and Mesoscale Meteorology, E. Fedorovich, R. Rotunno, and B. Stevens, Eds., Cambridge University Press, 165–191.

  • Emanuel, K. A., and R. Rotunno, 2011: Self-stratification of tropical cyclone outflow. Part I: Implications for storm structure. J. Atmos. Sci., 68, 22362249.

    • Search Google Scholar
    • Export Citation
  • Ferziger, J. H., and M. Perić, 2002: Computational Methods for Fluid Dynamics. 3rd ed. Springer, 423 pp.

  • Harper, B. A., J. D. Kepert, and J. D. Ginger, 2010: Guidelines for converting between various wind averaging periods in tropical cyclone conditions. World Meteorological Organization Tech. Rep. WMO/TD-1555, 54 pp.

  • Haus, B. K., D. Jeong, M. A. Donelan, J. A. Zhang, and I. Savelyev, 2010: Relative rates of sea-air heat transfer and frictional drag in very high winds. Geophys. Res. Lett., 37, L07802, doi:10.1029/2009GL042206.

    • Search Google Scholar
    • Export Citation
  • Hausman, S. A., 2001: Formulation and sensitivity analysis of a nonhydrostatic axisymmetric tropical cyclone model. Ph.D. dissertation, Colorado State University, 207 pp.

  • Hausman, S. A., K. V. Ooyama, and W. H. Schubert, 2006: Potential vorticity structure of simulated hurricanes. J. Atmos. Sci., 63, 87108.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1997: The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54, 25192541.

  • Jeong, D., 2008: Laboratory measurements of the moist enthalpy transfer coefficient. M.S. thesis, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 63 pp.

  • Kepert, J., 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part I: Linear theory. J. Atmos. Sci., 58, 24692484.

    • Search Google Scholar
    • Export Citation
  • Kepert, J., 2006a: Observed boundary layer wind structure and balance in the hurricane core. Part I: Hurricane Georges. J. Atmos. Sci., 63, 21692193.

    • Search Google Scholar
    • Export Citation
  • Kepert, J., 2006b: Observed boundary layer wind structure and balance in the hurricane core. Part II: Hurricane Mitch. J. Atmos. Sci., 63, 21942211.

    • Search Google Scholar
    • Export Citation
  • Kepert, J., and Y. Wang, 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part II: Nonlinear enhancement. J. Atmos. Sci., 58, 24852501.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., and R. M. Zehr, 2007: Reexamination of tropical cyclone wind–pressure relationships. Wea. Forecasting, 22, 7188.

  • Kuo, H. L., 1971: Axisymmetric flows in the boundary layer of a maintained vortex. J. Atmos. Sci., 28, 2041.

  • Leejoice, R. N., 2000: Hurricane inner-core structure as revealed by GPS dropwindsondes. M.S. thesis, Dept. of Atmospheric Science, Colorado State University, 56 pp.

  • Mallen, K. J., M. T. Montgomery, and B. Wang, 2005: Reexamining the near-core radial structure of the tropical cyclone primary circulation: Implications for vortex resiliency. J. Atmos. Sci., 62, 408425.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. M. Bell, S. D. Aberson, and M. L. Black, 2006: Hurricane Isabel (2003): New insights into the physics of intense storms. Part I: Mean vortex structure and maximum intensity estimates. Bull. Amer. Meteor. Soc., 87, 13351347.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., R. K. Smith, and S. V. Nguyen, 2010: Sensitivity of tropical-cyclone models to the surface drag coefficient. Quart. J. Roy. Meteor. Soc., 136, 19451953.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007.

    • Search Google Scholar
    • Export Citation
  • National Oceanic and Atmospheric Administation, 2006: Majority Report. NOAA/Science Advisory Board/Hurricane Intensity Research Working Group, 66 pp. [Available at http://www.sab.noaa.gov/Reports/HIRWG_final73.pdf.]

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., J. A. Zhang, and D. P. Stern, 2009a: Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in situ observations and high-resolution simulations of Hurricane Isabel (2003). Part I: Initialization, maximum winds, and the outer-core boundary layer. Mon. Wea. Rev., 137, 36513674.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., D. P. Stern, and J. A. Zhang, 2009b: Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in situ observations and high-resolution simulations of Hurricane Isabel (2003). Part II: Inner-core boundary layer and eyewall structure. Mon. Wea. Rev., 137, 36753698.

    • Search Google Scholar
    • Export Citation
  • Persing, J., and M. T. Montgomery, 2003: Hurricane superintensity. J. Atmos. Sci., 60, 23492371.

  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., E. W. Uhlhorn, and J. D. Kepert, 2009: Estimating maximum surface winds from hurricane reconnaissance measurements. Wea. Forecasting, 24, 868883.

    • Search Google Scholar
    • Export Citation
  • Richtmyer, R. D., and K. W. Morton, 1967: Difference Methods for Initial Values Problems. Interscience, 406 pp.

  • Rosenthal, S. L., 1971: The response of a tropical cyclone model to variations in boundary layer parameters, initial conditions, lateral boundary conditions, and domain size. Mon. Wea. Rev., 99, 767777.

    • Search Google Scholar
    • Export Citation
  • Rott, N., and W. S. Lewellen, 1966: Boundary layers and their interactions in rotating flows. Prog. Aeronaut. Sci., 7, 111144.

  • Rotunno, R., and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542561.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., Y. Chen, W. Wang, C. Davis, J. Dudhia, and G. J. Holland, 2009: Large-eddy simulation of an idealized tropical cyclone. Bull. Amer. Meteor. Soc., 90, 17831788.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., M. T. Montgomery, R. K. Taft, T. A. Guinn, S. R. Fulton, J. P. Kossin, and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56, 11971223.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., M. T. Montgomery, and S. Vogl, 2008: A critique of Emanuel’s hurricane model and potential intensity theory. Quart. J. Roy. Meteor. Soc., 134, 551561.

    • Search Google Scholar
    • Export Citation
  • Stern, D. P., and D. S. Nolan, 2009: Reexamining the vertical structure of tangential winds in tropical cyclones: Observations and theory. J. Atmos. Sci., 66, 35793600.

    • Search Google Scholar
    • Export Citation
  • Whitney, L. D., and J. S. Hobgood, 1997: The relationship between sea surface temperatures and maximum intensities of tropical cyclones in the eastern North Pacific. J. Climate, 10, 29212930.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., and M. E. Rahn, 2004: Parametric representation of the primary hurricane vortex. Part I: Observations and evaluation of the Holland (1980) model. Mon. Wea. Rev., 132, 30333048.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 2010: Turbulence in the Atmosphere. Cambridge University Press, 393 pp.

  • Zhang, D.-L., Y. Liu, and M. K. Yau, 2001: A multiscale numerical study of Hurricane Andrew (1992). Part IV: Unbalanced flows. Mon. Wea. Rev., 129, 92107.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., P. G. Black, J. R. French, and W. M. Drennan, 2008: First direct measurements of enthalpy flux in the hurricane boundary layer: The CBLAST results. Geophys. Res. Lett., 35, L14813, doi:10.1029/2008GL034374.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., F. D. Marks, M. T. Montgomery, and S. Lorsolo, 2011a: An estimation of turbulent characteristics in the low-level region of intense hurricanes Allen (1980) and Hugo (1989). Mon. Wea. Rev., 139, 14471462.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., R. F. Rogers, D. S. Nolan, and F. D. Marks Jr., 2011b: On the characteristic height scales of the hurricane boundary layer. Mon. Wea. Rev., 139, 25232535.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 891 333 42
PDF Downloads 717 240 24