Localization and Sampling Error Correction in Ensemble Kalman Filter Data Assimilation

Jeffrey L. Anderson NCAR/Data Assimilation Research Section,* Boulder, Colorado

Search for other papers by Jeffrey L. Anderson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Ensemble Kalman filters use the sample covariance of an observation and a model state variable to update a prior estimate of the state variable. The sample covariance can be suboptimal as a result of small ensemble size, model error, model nonlinearity, and other factors. The most common algorithms for dealing with these deficiencies are inflation and covariance localization. A statistical model of errors in ensemble Kalman filter sample covariances is described and leads to an algorithm that reduces ensemble filter root-mean-square error for some applications. This sampling error correction algorithm uses prior information about the distribution of the correlation between an observation and a state variable. Offline Monte Carlo simulation is used to build a lookup table that contains a correction factor between 0 and 1 depending on the ensemble size and the ensemble sample correlation. Correction factors are applied like a traditional localization for each pair of observations and state variables during an ensemble assimilation. The algorithm is applied to two low-order models and reduces the sensitivity of the ensemble assimilation error to the strength of traditional localization. When tested in perfect model experiments in a larger model, the dynamical core of a general circulation model, the sampling error correction algorithm produces analyses that are closer to the truth and also reduces sensitivity to traditional localization strength.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Jeffrey Anderson, NCAR, 1850 Table Mesa Dr., Boulder, CO 80305. E-mail: jla@ucar.edu

Abstract

Ensemble Kalman filters use the sample covariance of an observation and a model state variable to update a prior estimate of the state variable. The sample covariance can be suboptimal as a result of small ensemble size, model error, model nonlinearity, and other factors. The most common algorithms for dealing with these deficiencies are inflation and covariance localization. A statistical model of errors in ensemble Kalman filter sample covariances is described and leads to an algorithm that reduces ensemble filter root-mean-square error for some applications. This sampling error correction algorithm uses prior information about the distribution of the correlation between an observation and a state variable. Offline Monte Carlo simulation is used to build a lookup table that contains a correction factor between 0 and 1 depending on the ensemble size and the ensemble sample correlation. Correction factors are applied like a traditional localization for each pair of observations and state variables during an ensemble assimilation. The algorithm is applied to two low-order models and reduces the sensitivity of the ensemble assimilation error to the strength of traditional localization. When tested in perfect model experiments in a larger model, the dynamical core of a general circulation model, the sampling error correction algorithm produces analyses that are closer to the truth and also reduces sensitivity to traditional localization strength.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Jeffrey Anderson, NCAR, 1850 Table Mesa Dr., Boulder, CO 80305. E-mail: jla@ucar.edu
Save
  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903.

  • Anderson, J. L., 2003: A local least squares framework for ensemble filtering. Mon. Wea. Rev., 131, 634642.

  • Anderson, J. L., 2007: Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter. Physica D, 230, 99111.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2009a: Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus, 61A, 7283.

  • Anderson, J. L., 2009b: Ensemble Kalman filters for large geophysical applications. IEEE Control Syst., 29, 6682.

  • Anderson, J. L., B. Wyman, S. Zhang, and T. Hoar, 2005: Assimilation of surface pressure observations using an ensemble filter in an idealized global atmospheric prediction system. J. Atmos. Sci., 62, 29252938.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. Arellano, 2009: The Data Assimilation Research Testbed. Bull. Amer. Meteor. Soc., 90, 12831296.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., and D. Hodyss, 2007: Flow adaptive moderation of spurious ensemble correlations and its use in ensemble based data assimilation. Quart. J. Roy. Meteor. Soc., 133, 20292044.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., and D. Hodyss, 2009a: Ensemble covariances adaptively localized with ECO-RAP. Part 1: Tests on simple error models. Tellus, 61A, 8496.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., and D. Hodyss, 2009b: Ensemble covariances adaptively localized with ECO-RAP. Part 2: A strategy for the atmosphere. Tellus, 61A, 97111.

    • Search Google Scholar
    • Export Citation
  • Burgers, G., P. J. van Leeuwen, and G. Evensen, 1998: Analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126, 17191724.

  • Campbell, W. F., C. H. Bishop, and D. Hodyss, 2010: Vertical covariance localization for satellite radiances in ensemble Kalman filters. Mon. Wea. Rev., 138, 282290.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., and D. S. Oliver, 2009: Cross-covariances and localization for EnKF in multiphase flow data assimilation. Comput. Geosci., 14, 579601, doi:10.1007/s10596-009-9174-6.

    • Search Google Scholar
    • Export Citation
  • Courtier, P., and Coauthors, 1998: The ECMWF implementation of three-dimensional variational assimilation (3D-Var). I: Formulation. Quart. J. Roy. Meteor. Soc., 124, 17831807.

    • Search Google Scholar
    • Export Citation
  • Emerick, A., and A. Reynolds, 2010: Combining sensitivities and prior information for covariance localization in the ensemble Kalman filter for petroleum reservoir applications. Comput. Geosci., 15, 251269, doi:10.1007/s10596-010-9198-y.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99 (C5), 10 14310 162.

    • Search Google Scholar
    • Export Citation
  • Fillion, L., H. L. Mitchell, H. Ritchie, and A. Staniforth, 1995: The impact of a digital filter finalization technique in a global data assimilation system. Tellus, 47A, 304323.

    • Search Google Scholar
    • Export Citation
  • Furrer, R., and T. Bengtsson, 2007: Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants. J. Multivar. Anal., 98, 227255.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757.

    • Search Google Scholar
    • Export Citation
  • GFDL Global Atmospheric Model Development Team, 2004: The new GFDL global atmosphere and land model AM2–LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 46414673.

    • Search Google Scholar
    • Export Citation
  • Greybush, S. J., E. Kalnay, T. Miyoshi, K. Ide, and B. R. Hunt, 2011: Balance and ensemble Kalman filter localization techniques. Mon. Wea. Rev., 139, 511522.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., J. S. Whitaker, and C. Snyder, 2001: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev., 129, 27762790.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796811.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 2005: Ensemble Kalman filtering. Quart. J. Roy. Meteor. Soc., 131, 32693289.

  • Kepert, J. D., 2009: Covariance localisation and balance in an Ensemble Kalman Filter. Quart. J. Roy. Meteor. Soc., 135, 11571176.

  • Li, H., E. Kalnay, and T. Miyoshi, 2009a: Simultaneous estimation of covariance inflation and observation errors within an ensemble Kalman filter. Quart. J. Roy. Meteor. Soc., 135, 523533.

    • Search Google Scholar
    • Export Citation
  • Li, H., E. Kalnay, T. Miyoshi, and C. M. Danforth, 2009b: Accounting for model errors in ensemble data assimilation. Mon. Wea. Rev., 137, 34073419.

    • Search Google Scholar
    • Export Citation
  • Liu, H., J. L. Anderson, Y.-H. Kuo, and K. Raeder, 2007: Importance of forecast error multivariate correlations in idealized assimilations of GPS radio occultation data with the ensemble adjustment filter. Mon. Wea. Rev., 135, 173185.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., and K. A. Emanuel, 1998: Optimal sites for supplementary weather observations: Simulation with a small model. J. Atmos. Sci., 55, 399414.

    • Search Google Scholar
    • Export Citation
  • Lyster, P. M., S. E. Cohn, R. Menard, L.-P. Chang, S.-J. Lin, and R. G. Olsen, 1997: Parallel implementation of a Kalman filter for constituent data assimilation. Mon. Wea. Rev., 125, 16741686.

    • Search Google Scholar
    • Export Citation
  • Mitchell, H. L., and P. L. Houtekamer, 2000: An adaptive ensemble Kalman filter. Mon. Wea. Rev., 128, 416433.

  • Mitchell, H. L., P. L. Houtekamer, and G. Pellerin, 2002: Ensemble size, balance and model-error representation in an ensemble Kalman filter. Mon. Wea. Rev., 130, 27912808.

    • Search Google Scholar
    • Export Citation
  • Miyoshi, T., S. Yamane, and T. Enomoto, 2007: Localizing the error covariance by physical distance within a local ensemble transform Kalman filter (LETKF). Sci. Online Lett. Atmos., 3, 8992.

    • Search Google Scholar
    • Export Citation
  • Oke, P. R., P. Sakov, and S. P. Corney, 2007: Impacts of localization in the EnKF and EnOI: Experiments with a small model. Ocean Dyn., 57, 3245.

    • Search Google Scholar
    • Export Citation
  • Ott, E., and Coauthors, 2004: A local ensemble Kalman filter for atmospheric data assimilation. Tellus, 56A, 415428.

  • Tong, M., and M. Xue, 2005: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev., 133, 17891807.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., G. P. Compo, X. Wei, and T. M. Hamill, 2004: Reanalysis without radiosondes using ensemble data assimilation. Mon. Wea. Rev., 132, 11901200.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and D. S. Oliver, 2010: Improving the ensemble estimate of the Kalman gain by bootstrap sampling. Math. Geosci., 42, 327345.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1270 509 48
PDF Downloads 1015 336 25