• Aydin, K., and V. Giridhar, 1992: C-band dual-polarization radar observables in rain. J. Atmos. Oceanic Technol., 9, 383390.

  • Aydin, K., Y. Zhao, and T. A. Seliga, 1990: A differential reflectivity radar hail measurement technique: Observations during the Denver hailstorm of 13 June 1984. J. Atmos. Oceanic Technol., 7, 104113.

    • Search Google Scholar
    • Export Citation
  • Barker, D. M., W. Huang, Y. R. Guo, and Q. N. Xiao, 2004: A three-dimensional (3DVAR) data assimilation system for use with MM5: Implementation and initial results. Mon. Wea. Rev., 132, 897914.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., A. V. Ryzhkov, and D. S. Zrnić, 2001: An evaluation of radar rainfall estimates from specific differential phase. J. Atmos. Oceanic Technol., 18, 363375.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., G. Zhang, and J. Vivekanandan, 2002: Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteor., 41, 674685.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 641 pp.

  • Bringi, V. N., T. Keenan, and V. Chandrasekar, 2001: Correcting C-band radar reflectivity and differential reflectivity data for rain attenuation: A self-consistent method with constraints. IEEE Trans. Geosci. Remote Sens., 39, 19061915.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., V. Chandrasekar, J. Hubbert, E. Gorgucci, W. L. Randeu, and M. Schoenhuber, 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60, 354365.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., S. A. Rutledge, D. A. Ahijevych, and T. D. Keenan, 2000: Correcting propagation effects in C-band polarimetric radar observations of tropical convection using differential propagation phase. J. Appl. Meteor., 39, 14051433.

    • Search Google Scholar
    • Export Citation
  • Caya, A., J. Sun, and C. Snyder, 2005: A comparison between the 4DVAR and the ensemble Kalman filter techniques for radar data assimilation. Mon. Wea. Rev., 133, 30813094.

    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., V. N. Bringi, N. Balakrishnan, and D. S. Zrnić, 1990: Error structure of multiparameter radar and surface measurements of rainfall. Part III: Specific differential phase. J. Atmos. Oceanic Technol., 7, 621629.

    • Search Google Scholar
    • Export Citation
  • Chung, K.-S., I. Zawadzki, M. K. Yau, and L. Fillion, 2009: Short-term forecasting of a midlatitude convective storm by the assimilation of single–Doppler radar observations. Mon. Wea. Rev., 137, 41154135.

    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., and M. Xue, 2006: Numerical forecasts of the 15–16 June 2002 southern plains mesoscale convective system: Impact of mesoscale data and cloud analysis. Mon. Wea. Rev., 134, 16071629.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., and Coauthors, 1995: Report of First Prospectus Development Team of the U.S. Weather Research Program to NOAA and the NSF. Bull. Amer. Meteor. Soc., 76, 11941208.

    • Search Google Scholar
    • Export Citation
  • Gorgucci, E., G. Scarchilli, and V. Chandrasekar, 1999: Specific differential phase estimation in the presence of nonuniform rainfall medium along the path. J. Atmos. Oceanic Technol., 16, 16901697.

    • Search Google Scholar
    • Export Citation
  • Guichard, F., D. Parsons, and E. Miller, 2000: Thermodynamic and radiative impact of the correction of sounding humidity bias in the tropics. J. Climate, 13, 36113624.

    • Search Google Scholar
    • Export Citation
  • Hall, M. P. M., J. W. F. Goddard, and S. M. Cherry, 1984: Identification of hydrometeors and other targets by dual-polarization radar. Radio Sci., 19, 132140.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341.

    • Search Google Scholar
    • Export Citation
  • Hu, M., M. Xue, and K. Brewster, 2006: 3DVAR and cloud analysis with WSR-88D level-II data for the prediction of the Fort Worth, Texas, tornadic thunderstorms. Part I: Cloud analysis and its impact. Mon. Wea. Rev., 134, 675698.

    • Search Google Scholar
    • Export Citation
  • Humphries, R. G., 1974: Depolarization effect at 3 GHz due to precipitation. McGill University Stormy Weather Group Scientific Rep. MW82, 84 pp.

  • Jameson, A. R., 1991: A comparison of microwave techniques for measuring rainfall. J. Appl. Meteor., 30, 3254.

  • Jung, Y., M. Xue, G. Zhang, and J. M. Straka, 2008a: Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman filter. Part I: Observation operators for reflectivity and polarimetric variables. Mon. Wea. Rev., 136, 22282245.

    • Search Google Scholar
    • Export Citation
  • Jung, Y., M. Xue, and G. Zhang, 2008b: Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman filter. Part II: Impact of polarimetric data on storm analysis. Mon. Wea. Rev., 136, 22462260.

    • Search Google Scholar
    • Export Citation
  • Jung, Y., M. Xue, and G. Zhang, 2010: Simulations of polarimetric radar signatures of a supercell storm using a two-moment bulk microphysics scheme. J. Appl. Meteor. Climatol., 49, 146163.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, 340 pp.

  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulation. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.

  • Lee, G.-W., 2006: Sources of errors in rainfall measurements by polarimetric radar: Variability of drop size distributions, observational noise, and variation of relationships between R and polarimetric parameters. J. Atmos. Oceanic Technol., 23, 10051028.

    • Search Google Scholar
    • Export Citation
  • Li, X., and J. R. Mecikalski, 2010: Assimilation of dual-polarimetric Doppler radar data for a convective storm with a warm-rain radar forward operator. J. Geophys. Res., 115, D16208, doi:10.1029/2009JD013666.

    • Search Google Scholar
    • Export Citation
  • Li, X., J. R. Mecikalski, and L. Carey, 2009:Assimilation of dual-polarimetric radar observations and its impact. Preprints, 10thWRF Users’ Workshop, Boulder, CO, National Center for Atmospheric Research, P2A.12.

  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. J. Geophys. Res., 102 (D14), 16 66316 682.

    • Search Google Scholar
    • Export Citation
  • Parrish, D. F., and J. C. Derber, 1992: The National Meteorological Center’s spectral statistical-interpolation analysis system. Mon. Wea. Rev., 120, 17471763.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., and Coauthors, 2005: The UAH-NSSTC/WHNT ARMOR C-band dual-polarimetric radar: A unique collaboration in research, education, and technology transfer. Preprints, 32nd Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., 12R.4. [Available online at http://ams.confex.com/ams/pdfpapers/96524.pdf.]

  • Petersen, W. A., K. R. Knupp, D. J. Cecil, and J. R. Mecikalsi, 2007: The University of Alabama Huntsville THOR Center instrumentation: Research and operational collaboration. Preprints, 33rd Int. Conf. on Radar Meteorology, Cairns, Australia, Amer. Meteor. Soc., 5.1. [Available online at http://ams.confex.com/ams/pdfpapers/123410.pdf.]

  • Pu, Z., X. Li, and J. Sun, 2009: Impact of airborne Doppler radar data assimilation on the numerical simulation of intensity change of Hurricane Dennis (2005) near a landfall. J. Atmos. Sci., 66, 33513365.

    • Search Google Scholar
    • Export Citation
  • Qiu, C.-J., and Q. Xu, 1992: A simple adjoint method of wind analysis for single-Doppler data. J. Atmos. Oceanic Technol., 9, 588598.

    • Search Google Scholar
    • Export Citation
  • Rinehart, R. E., 1997: Radar for Meteorologists. Rinehart, 428 pp.

  • Ryzhkov, A., and D. Zrnić, 1995: Comparison of dual-polarization radar estimators of rain. J. Atmos. Oceanic Technol., 12, 249256.

  • Ryzhkov, A., and D. Zrnić, 1996: Assessment of rainfall measurement that uses specific differential phase. J. Appl. Meteor., 35, 20802090.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., D. Zrnić, and B. A. Gordon, 1998: Polarimetric method for ice water content determination. J. Appl. Meteor., 37, 125134.

    • Search Google Scholar
    • Export Citation
  • Sachidananda, M., and D. S. Zrnić, 1986: Differential propagation phase shift and rainfall rate estimation. Radio Sci., 21, 235247.

  • Sachidananda, M., and D. S. Zrnić, 1987: Rain rate estimates from differential polarization measurements. J. Atmos. Oceanic Technol., 4, 588598.

    • Search Google Scholar
    • Export Citation
  • Seliga, T. A., and V. N. Bringi, 1976: Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J. Appl. Meteor., 15, 6976.

    • Search Google Scholar
    • Export Citation
  • Shapiro, A., S. Ellis, and J. Shaw, 1995: Single-Doppler velocity retrievals with Phoenix II data: Clear air and microburst wind retrievals in the planetary boundary layer. J. Atmos. Sci., 52, 12651287.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the advanced research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp.

  • Smyth, T. J., T. M. Blackman, and A. J. Illingworth, 1999: Observations of oblate hail using dual polarization radar and implications for hail-detection schemes. Quart. J. Roy. Meteor. Soc., 125, 9931016.

    • Search Google Scholar
    • Export Citation
  • Snyder, C., and F. Zhang, 2003: Tests of an ensemble Kalman filter for convective-scale data assimilation. Mon. Wea. Rev., 131, 16631677.

    • Search Google Scholar
    • Export Citation
  • Sugimoto, S., N. A. Crook, J. Sun, Q. Xiao, and D. M. Barker, 2009: An examination of WRF 3DVAR radar data assimilation on its capability in retrieving unobserved variables and forecasting precipitation through observing system simulation experiments. Mon. Wea. Rev., 137, 40114029.

    • Search Google Scholar
    • Export Citation
  • Sun, J., 2005: Initialization and numerical forecasting of a supercell storm observed during STEPS. Mon. Wea. Rev., 133, 793813.

  • Sun, J., and N. A. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54, 16421661.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and N. A. Crook, 1998: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part II: Retrieval experiments of an observed Florida convective storm. J. Atmos. Sci., 55, 835852.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and Y. Zhang, 2008: Analysis and prediction of a squall line observed during IHOP using multiple WSR-88D observations. Mon. Wea. Rev., 136, 23642388.

    • Search Google Scholar
    • Export Citation
  • Tong, M., and M. Xue, 2005: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev., 133, 17891807.

    • Search Google Scholar
    • Export Citation
  • Tong, M., and M. Xue, 2008: Simultaneous estimation of microphysical parameters and atmospheric state with simulated radar data and ensemble square root Kalman filter. Part I: Sensitivity analysis and parameter identifiability. Mon. Wea. Rev., 136, 16301648.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., S. M. Ellis, R. Oye, D. S. Zrnić, A. V. Ryzhkov, and J. Straka, 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80, 381388.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., G. Zhang, and E. Brandes, 2004: Polarimetric radar estimators based on a constrained gamma drop size distribution model. J. Appl. Meteor., 43, 217230.

    • Search Google Scholar
    • Export Citation
  • Wang, J., H. L. Cole, D. J. Carlson, E. R. Miller, K. Beierle, A. Paukkunen, and T. K. Laine, 2002: Corrections of humidity measurement errors from the Vaisala RS80 radiosonde—Application to TOGA COARE data. J. Atmos. Oceanic Technol., 19, 9811002.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and Coauthors, 2004: An overview of the International H2O Project (IHOP_2002) and some preliminary highlights. Bull. Amer. Meteor. Soc., 85, 253277.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., C. Davis, W. Wang, K. W. Manning, and J. B. Klemp, 2008: Experiences with 0–36-h explicit convective forecasts with the WRF-ARW model. Wea. Forecasting, 23, 407437.

    • Search Google Scholar
    • Export Citation
  • Weygandt, S. S., A. Shapiro, and K. K. Droegemeier, 2002: Retrieval of model initial fields from single-Doppler observations of a supercell thunderstorm. Part II: Thermodynamic retrieval and numerical prediction. Mon. Wea. Rev., 130, 454476.

    • Search Google Scholar
    • Export Citation
  • Wu, B., J. Verlinde, and J. Sun, 2000: Dynamical and microphysical retrievals from Doppler radar observations of a deep convective cloud. J. Atmos. Sci., 57, 262283.

    • Search Google Scholar
    • Export Citation
  • Xiao, Q., Y.-H. Kuo, J. Sun, W.-C. Lee, E. Lim, Y.-R. Guo, and D. M. Barker, 2005: Assimilation of Doppler radar observations with a regional 3DVAR system: Impact of Doppler velocities on forecasts of a heavy rainfall case. J. Appl. Meteor., 44, 768788.

    • Search Google Scholar
    • Export Citation
  • Xiao, Q., and Coauthors, 2006: Doppler radar data assimilation with WRF-VAR: Current status and future plan. Preprints, Seventh WRF Users’ Workshop, Boulder, CO, National Center for Atmospheric Research, P4.7.

  • Xiao, Q., Y.-H. Guo, J. Sun, W.-C. Lee, D. M. Barker, and E. Lim, 2007: An approach of radar reflectivity data assimilation and its assessment with the inland QPF of Typhoon Rusa (2002) at landfall. J. Appl. Meteor. Climatol., 46, 1422.

    • Search Google Scholar
    • Export Citation
  • Xiao, Q., and Coauthors, 2008: Doppler radar data assimilation in KMA’s operational forecasting. Bull. Amer. Meteor. Soc., 89, 3943.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., C. Snyder, and J. Sun, 2004: Tests of an ensemble Kalman filter for convective-scale data assimilation: Impact of initial estimate and observations. Mon. Wea. Rev., 132, 12381253.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., Y. Weng, J. A. Sippel, Z. Meng, and C. H. Bishop, 2009: Cloud-resolving hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 137, 21052125.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., J. Vivekanandan, and E. Brandes, 2001: A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans. Geosci. Remote Sens., 39, 830841.

    • Search Google Scholar
    • Export Citation
  • Zhao, Q., J. Cook, Q. Xu, and P. R. Harasti, 2006: Using radar wind observations to improve mesoscale numerical weather prediction. Wea. Forecasting, 21, 502522.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., and A. V. Ryzhkov, 1996: Advantages of rain measurements using specific differential phase. J. Atmos. Oceanic Technol., 13, 454464.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 11 11 11
PDF Downloads 5 5 5

Impact of the Dual-Polarization Doppler Radar Data on Two Convective Storms with a Warm-Rain Radar Forward Operator

View More View Less
  • 1 Atmospheric Science Department, University of Alabama in Huntsville, Huntsville, Alabama
Restricted access

Abstract

The dual-polarization (dual pol) Doppler radar can transmit/receive both horizontally and vertically polarized power returns. The dual-pol radar measurements have been shown to provide a more accurate precipitation estimate compared to traditional radars. In this study, the horizontal reflectivity ZH, differential reflectivity ZDR, specific differential phase KDP, and radial velocity VR collected by the C-band Advanced Radar for Meteorological and Operational Research (ARMOR) are assimilated for two convective storms. A warm-rain scheme is constructed to assimilate ZH, ZDR, and KDP data using the three-dimensional variational data assimilation (3DVAR) system with the Advanced Research Weather Research and Forecasting Model (ARW-WRF). The main goals of this study are first to demonstrate and compare the impact of various dual-pol variables in initialization of real case convective storms and second to test how the dual-pol fields may be better used with a 3DVAR system.

The results show that the ZH, ZDR, KDP, and VR data substantially improve the initial condition for two mesoscale convective storms. Significant positive impacts on short-term forecast are obtained for both storms. Additionally, KDP and ZDR data assimilation is shown to be superior to ZH and ZDR and ZH-only data assimilation when the warm-rain microphysics is adopted. With the ongoing upgrade of the current Weather Surveillance Radar-1988 Doppler (WSR-88D) network to include dual-pol capabilities (started in early 2011), the findings from this study can be a helpful reference for utilizing the dual-pol radar data in numerical simulations of severe weather and related quantitative precipitation forecasts.

Corresponding author address: Dr. Xuanli Li, Earth System Science Center, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35805. E-mail: xuanli@nsstc.uah.edu

Abstract

The dual-polarization (dual pol) Doppler radar can transmit/receive both horizontally and vertically polarized power returns. The dual-pol radar measurements have been shown to provide a more accurate precipitation estimate compared to traditional radars. In this study, the horizontal reflectivity ZH, differential reflectivity ZDR, specific differential phase KDP, and radial velocity VR collected by the C-band Advanced Radar for Meteorological and Operational Research (ARMOR) are assimilated for two convective storms. A warm-rain scheme is constructed to assimilate ZH, ZDR, and KDP data using the three-dimensional variational data assimilation (3DVAR) system with the Advanced Research Weather Research and Forecasting Model (ARW-WRF). The main goals of this study are first to demonstrate and compare the impact of various dual-pol variables in initialization of real case convective storms and second to test how the dual-pol fields may be better used with a 3DVAR system.

The results show that the ZH, ZDR, KDP, and VR data substantially improve the initial condition for two mesoscale convective storms. Significant positive impacts on short-term forecast are obtained for both storms. Additionally, KDP and ZDR data assimilation is shown to be superior to ZH and ZDR and ZH-only data assimilation when the warm-rain microphysics is adopted. With the ongoing upgrade of the current Weather Surveillance Radar-1988 Doppler (WSR-88D) network to include dual-pol capabilities (started in early 2011), the findings from this study can be a helpful reference for utilizing the dual-pol radar data in numerical simulations of severe weather and related quantitative precipitation forecasts.

Corresponding author address: Dr. Xuanli Li, Earth System Science Center, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35805. E-mail: xuanli@nsstc.uah.edu
Save