Impact of the Dual-Polarization Doppler Radar Data on Two Convective Storms with a Warm-Rain Radar Forward Operator

Xuanli Li Atmospheric Science Department, University of Alabama in Huntsville, Huntsville, Alabama

Search for other papers by Xuanli Li in
Current site
Google Scholar
PubMed
Close
and
John R. Mecikalski Atmospheric Science Department, University of Alabama in Huntsville, Huntsville, Alabama

Search for other papers by John R. Mecikalski in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The dual-polarization (dual pol) Doppler radar can transmit/receive both horizontally and vertically polarized power returns. The dual-pol radar measurements have been shown to provide a more accurate precipitation estimate compared to traditional radars. In this study, the horizontal reflectivity ZH, differential reflectivity ZDR, specific differential phase KDP, and radial velocity VR collected by the C-band Advanced Radar for Meteorological and Operational Research (ARMOR) are assimilated for two convective storms. A warm-rain scheme is constructed to assimilate ZH, ZDR, and KDP data using the three-dimensional variational data assimilation (3DVAR) system with the Advanced Research Weather Research and Forecasting Model (ARW-WRF). The main goals of this study are first to demonstrate and compare the impact of various dual-pol variables in initialization of real case convective storms and second to test how the dual-pol fields may be better used with a 3DVAR system.

The results show that the ZH, ZDR, KDP, and VR data substantially improve the initial condition for two mesoscale convective storms. Significant positive impacts on short-term forecast are obtained for both storms. Additionally, KDP and ZDR data assimilation is shown to be superior to ZH and ZDR and ZH-only data assimilation when the warm-rain microphysics is adopted. With the ongoing upgrade of the current Weather Surveillance Radar-1988 Doppler (WSR-88D) network to include dual-pol capabilities (started in early 2011), the findings from this study can be a helpful reference for utilizing the dual-pol radar data in numerical simulations of severe weather and related quantitative precipitation forecasts.

Corresponding author address: Dr. Xuanli Li, Earth System Science Center, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35805. E-mail: xuanli@nsstc.uah.edu

Abstract

The dual-polarization (dual pol) Doppler radar can transmit/receive both horizontally and vertically polarized power returns. The dual-pol radar measurements have been shown to provide a more accurate precipitation estimate compared to traditional radars. In this study, the horizontal reflectivity ZH, differential reflectivity ZDR, specific differential phase KDP, and radial velocity VR collected by the C-band Advanced Radar for Meteorological and Operational Research (ARMOR) are assimilated for two convective storms. A warm-rain scheme is constructed to assimilate ZH, ZDR, and KDP data using the three-dimensional variational data assimilation (3DVAR) system with the Advanced Research Weather Research and Forecasting Model (ARW-WRF). The main goals of this study are first to demonstrate and compare the impact of various dual-pol variables in initialization of real case convective storms and second to test how the dual-pol fields may be better used with a 3DVAR system.

The results show that the ZH, ZDR, KDP, and VR data substantially improve the initial condition for two mesoscale convective storms. Significant positive impacts on short-term forecast are obtained for both storms. Additionally, KDP and ZDR data assimilation is shown to be superior to ZH and ZDR and ZH-only data assimilation when the warm-rain microphysics is adopted. With the ongoing upgrade of the current Weather Surveillance Radar-1988 Doppler (WSR-88D) network to include dual-pol capabilities (started in early 2011), the findings from this study can be a helpful reference for utilizing the dual-pol radar data in numerical simulations of severe weather and related quantitative precipitation forecasts.

Corresponding author address: Dr. Xuanli Li, Earth System Science Center, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35805. E-mail: xuanli@nsstc.uah.edu
Save
  • Aydin, K., and V. Giridhar, 1992: C-band dual-polarization radar observables in rain. J. Atmos. Oceanic Technol., 9, 383390.

  • Aydin, K., Y. Zhao, and T. A. Seliga, 1990: A differential reflectivity radar hail measurement technique: Observations during the Denver hailstorm of 13 June 1984. J. Atmos. Oceanic Technol., 7, 104113.

    • Search Google Scholar
    • Export Citation
  • Barker, D. M., W. Huang, Y. R. Guo, and Q. N. Xiao, 2004: A three-dimensional (3DVAR) data assimilation system for use with MM5: Implementation and initial results. Mon. Wea. Rev., 132, 897914.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., A. V. Ryzhkov, and D. S. Zrnić, 2001: An evaluation of radar rainfall estimates from specific differential phase. J. Atmos. Oceanic Technol., 18, 363375.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., G. Zhang, and J. Vivekanandan, 2002: Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteor., 41, 674685.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 641 pp.

  • Bringi, V. N., T. Keenan, and V. Chandrasekar, 2001: Correcting C-band radar reflectivity and differential reflectivity data for rain attenuation: A self-consistent method with constraints. IEEE Trans. Geosci. Remote Sens., 39, 19061915.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., V. Chandrasekar, J. Hubbert, E. Gorgucci, W. L. Randeu, and M. Schoenhuber, 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60, 354365.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., S. A. Rutledge, D. A. Ahijevych, and T. D. Keenan, 2000: Correcting propagation effects in C-band polarimetric radar observations of tropical convection using differential propagation phase. J. Appl. Meteor., 39, 14051433.

    • Search Google Scholar
    • Export Citation
  • Caya, A., J. Sun, and C. Snyder, 2005: A comparison between the 4DVAR and the ensemble Kalman filter techniques for radar data assimilation. Mon. Wea. Rev., 133, 30813094.

    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., V. N. Bringi, N. Balakrishnan, and D. S. Zrnić, 1990: Error structure of multiparameter radar and surface measurements of rainfall. Part III: Specific differential phase. J. Atmos. Oceanic Technol., 7, 621629.

    • Search Google Scholar
    • Export Citation
  • Chung, K.-S., I. Zawadzki, M. K. Yau, and L. Fillion, 2009: Short-term forecasting of a midlatitude convective storm by the assimilation of single–Doppler radar observations. Mon. Wea. Rev., 137, 41154135.

    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., and M. Xue, 2006: Numerical forecasts of the 15–16 June 2002 southern plains mesoscale convective system: Impact of mesoscale data and cloud analysis. Mon. Wea. Rev., 134, 16071629.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., and Coauthors, 1995: Report of First Prospectus Development Team of the U.S. Weather Research Program to NOAA and the NSF. Bull. Amer. Meteor. Soc., 76, 11941208.

    • Search Google Scholar
    • Export Citation
  • Gorgucci, E., G. Scarchilli, and V. Chandrasekar, 1999: Specific differential phase estimation in the presence of nonuniform rainfall medium along the path. J. Atmos. Oceanic Technol., 16, 16901697.

    • Search Google Scholar
    • Export Citation
  • Guichard, F., D. Parsons, and E. Miller, 2000: Thermodynamic and radiative impact of the correction of sounding humidity bias in the tropics. J. Climate, 13, 36113624.

    • Search Google Scholar
    • Export Citation
  • Hall, M. P. M., J. W. F. Goddard, and S. M. Cherry, 1984: Identification of hydrometeors and other targets by dual-polarization radar. Radio Sci., 19, 132140.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341.

    • Search Google Scholar
    • Export Citation
  • Hu, M., M. Xue, and K. Brewster, 2006: 3DVAR and cloud analysis with WSR-88D level-II data for the prediction of the Fort Worth, Texas, tornadic thunderstorms. Part I: Cloud analysis and its impact. Mon. Wea. Rev., 134, 675698.

    • Search Google Scholar
    • Export Citation
  • Humphries, R. G., 1974: Depolarization effect at 3 GHz due to precipitation. McGill University Stormy Weather Group Scientific Rep. MW82, 84 pp.

  • Jameson, A. R., 1991: A comparison of microwave techniques for measuring rainfall. J. Appl. Meteor., 30, 3254.

  • Jung, Y., M. Xue, G. Zhang, and J. M. Straka, 2008a: Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman filter. Part I: Observation operators for reflectivity and polarimetric variables. Mon. Wea. Rev., 136, 22282245.

    • Search Google Scholar
    • Export Citation
  • Jung, Y., M. Xue, and G. Zhang, 2008b: Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman filter. Part II: Impact of polarimetric data on storm analysis. Mon. Wea. Rev., 136, 22462260.

    • Search Google Scholar
    • Export Citation
  • Jung, Y., M. Xue, and G. Zhang, 2010: Simulations of polarimetric radar signatures of a supercell storm using a two-moment bulk microphysics scheme. J. Appl. Meteor. Climatol., 49, 146163.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, 340 pp.

  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulation. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.

  • Lee, G.-W., 2006: Sources of errors in rainfall measurements by polarimetric radar: Variability of drop size distributions, observational noise, and variation of relationships between R and polarimetric parameters. J. Atmos. Oceanic Technol., 23, 10051028.

    • Search Google Scholar
    • Export Citation
  • Li, X., and J. R. Mecikalski, 2010: Assimilation of dual-polarimetric Doppler radar data for a convective storm with a warm-rain radar forward operator. J. Geophys. Res., 115, D16208, doi:10.1029/2009JD013666.

    • Search Google Scholar
    • Export Citation
  • Li, X., J. R. Mecikalski, and L. Carey, 2009:Assimilation of dual-polarimetric radar observations and its impact. Preprints, 10thWRF Users’ Workshop, Boulder, CO, National Center for Atmospheric Research, P2A.12.

  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. J. Geophys. Res., 102 (D14), 16 66316 682.

    • Search Google Scholar
    • Export Citation
  • Parrish, D. F., and J. C. Derber, 1992: The National Meteorological Center’s spectral statistical-interpolation analysis system. Mon. Wea. Rev., 120, 17471763.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., and Coauthors, 2005: The UAH-NSSTC/WHNT ARMOR C-band dual-polarimetric radar: A unique collaboration in research, education, and technology transfer. Preprints, 32nd Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., 12R.4. [Available online at http://ams.confex.com/ams/pdfpapers/96524.pdf.]

  • Petersen, W. A., K. R. Knupp, D. J. Cecil, and J. R. Mecikalsi, 2007: The University of Alabama Huntsville THOR Center instrumentation: Research and operational collaboration. Preprints, 33rd Int. Conf. on Radar Meteorology, Cairns, Australia, Amer. Meteor. Soc., 5.1. [Available online at http://ams.confex.com/ams/pdfpapers/123410.pdf.]

  • Pu, Z., X. Li, and J. Sun, 2009: Impact of airborne Doppler radar data assimilation on the numerical simulation of intensity change of Hurricane Dennis (2005) near a landfall. J. Atmos. Sci., 66, 33513365.

    • Search Google Scholar
    • Export Citation
  • Qiu, C.-J., and Q. Xu, 1992: A simple adjoint method of wind analysis for single-Doppler data. J. Atmos. Oceanic Technol., 9, 588598.

    • Search Google Scholar
    • Export Citation
  • Rinehart, R. E., 1997: Radar for Meteorologists. Rinehart, 428 pp.

  • Ryzhkov, A., and D. Zrnić, 1995: Comparison of dual-polarization radar estimators of rain. J. Atmos. Oceanic Technol., 12, 249256.

  • Ryzhkov, A., and D. Zrnić, 1996: Assessment of rainfall measurement that uses specific differential phase. J. Appl. Meteor., 35, 20802090.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., D. Zrnić, and B. A. Gordon, 1998: Polarimetric method for ice water content determination. J. Appl. Meteor., 37, 125134.

    • Search Google Scholar
    • Export Citation
  • Sachidananda, M., and D. S. Zrnić, 1986: Differential propagation phase shift and rainfall rate estimation. Radio Sci., 21, 235247.

  • Sachidananda, M., and D. S. Zrnić, 1987: Rain rate estimates from differential polarization measurements. J. Atmos. Oceanic Technol., 4, 588598.

    • Search Google Scholar
    • Export Citation
  • Seliga, T. A., and V. N. Bringi, 1976: Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J. Appl. Meteor., 15, 6976.

    • Search Google Scholar
    • Export Citation
  • Shapiro, A., S. Ellis, and J. Shaw, 1995: Single-Doppler velocity retrievals with Phoenix II data: Clear air and microburst wind retrievals in the planetary boundary layer. J. Atmos. Sci., 52, 12651287.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the advanced research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp.

  • Smyth, T. J., T. M. Blackman, and A. J. Illingworth, 1999: Observations of oblate hail using dual polarization radar and implications for hail-detection schemes. Quart. J. Roy. Meteor. Soc., 125, 9931016.

    • Search Google Scholar
    • Export Citation
  • Snyder, C., and F. Zhang, 2003: Tests of an ensemble Kalman filter for convective-scale data assimilation. Mon. Wea. Rev., 131, 16631677.

    • Search Google Scholar
    • Export Citation
  • Sugimoto, S., N. A. Crook, J. Sun, Q. Xiao, and D. M. Barker, 2009: An examination of WRF 3DVAR radar data assimilation on its capability in retrieving unobserved variables and forecasting precipitation through observing system simulation experiments. Mon. Wea. Rev., 137, 40114029.

    • Search Google Scholar
    • Export Citation
  • Sun, J., 2005: Initialization and numerical forecasting of a supercell storm observed during STEPS. Mon. Wea. Rev., 133, 793813.

  • Sun, J., and N. A. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54, 16421661.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and N. A. Crook, 1998: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part II: Retrieval experiments of an observed Florida convective storm. J. Atmos. Sci., 55, 835852.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and Y. Zhang, 2008: Analysis and prediction of a squall line observed during IHOP using multiple WSR-88D observations. Mon. Wea. Rev., 136, 23642388.

    • Search Google Scholar
    • Export Citation
  • Tong, M., and M. Xue, 2005: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev., 133, 17891807.

    • Search Google Scholar
    • Export Citation
  • Tong, M., and M. Xue, 2008: Simultaneous estimation of microphysical parameters and atmospheric state with simulated radar data and ensemble square root Kalman filter. Part I: Sensitivity analysis and parameter identifiability. Mon. Wea. Rev., 136, 16301648.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., S. M. Ellis, R. Oye, D. S. Zrnić, A. V. Ryzhkov, and J. Straka, 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80, 381388.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., G. Zhang, and E. Brandes, 2004: Polarimetric radar estimators based on a constrained gamma drop size distribution model. J. Appl. Meteor., 43, 217230.

    • Search Google Scholar
    • Export Citation
  • Wang, J., H. L. Cole, D. J. Carlson, E. R. Miller, K. Beierle, A. Paukkunen, and T. K. Laine, 2002: Corrections of humidity measurement errors from the Vaisala RS80 radiosonde—Application to TOGA COARE data. J. Atmos. Oceanic Technol., 19, 9811002.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and Coauthors, 2004: An overview of the International H2O Project (IHOP_2002) and some preliminary highlights. Bull. Amer. Meteor. Soc., 85, 253277.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., C. Davis, W. Wang, K. W. Manning, and J. B. Klemp, 2008: Experiences with 0–36-h explicit convective forecasts with the WRF-ARW model. Wea. Forecasting, 23, 407437.

    • Search Google Scholar
    • Export Citation
  • Weygandt, S. S., A. Shapiro, and K. K. Droegemeier, 2002: Retrieval of model initial fields from single-Doppler observations of a supercell thunderstorm. Part II: Thermodynamic retrieval and numerical prediction. Mon. Wea. Rev., 130, 454476.

    • Search Google Scholar
    • Export Citation
  • Wu, B., J. Verlinde, and J. Sun, 2000: Dynamical and microphysical retrievals from Doppler radar observations of a deep convective cloud. J. Atmos. Sci., 57, 262283.

    • Search Google Scholar
    • Export Citation
  • Xiao, Q., Y.-H. Kuo, J. Sun, W.-C. Lee, E. Lim, Y.-R. Guo, and D. M. Barker, 2005: Assimilation of Doppler radar observations with a regional 3DVAR system: Impact of Doppler velocities on forecasts of a heavy rainfall case. J. Appl. Meteor., 44, 768788.

    • Search Google Scholar
    • Export Citation
  • Xiao, Q., and Coauthors, 2006: Doppler radar data assimilation with WRF-VAR: Current status and future plan. Preprints, Seventh WRF Users’ Workshop, Boulder, CO, National Center for Atmospheric Research, P4.7.

  • Xiao, Q., Y.-H. Guo, J. Sun, W.-C. Lee, D. M. Barker, and E. Lim, 2007: An approach of radar reflectivity data assimilation and its assessment with the inland QPF of Typhoon Rusa (2002) at landfall. J. Appl. Meteor. Climatol., 46, 1422.

    • Search Google Scholar
    • Export Citation
  • Xiao, Q., and Coauthors, 2008: Doppler radar data assimilation in KMA’s operational forecasting. Bull. Amer. Meteor. Soc., 89, 3943.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., C. Snyder, and J. Sun, 2004: Tests of an ensemble Kalman filter for convective-scale data assimilation: Impact of initial estimate and observations. Mon. Wea. Rev., 132, 12381253.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., Y. Weng, J. A. Sippel, Z. Meng, and C. H. Bishop, 2009: Cloud-resolving hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 137, 21052125.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., J. Vivekanandan, and E. Brandes, 2001: A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans. Geosci. Remote Sens., 39, 830841.

    • Search Google Scholar
    • Export Citation
  • Zhao, Q., J. Cook, Q. Xu, and P. R. Harasti, 2006: Using radar wind observations to improve mesoscale numerical weather prediction. Wea. Forecasting, 21, 502522.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., and A. V. Ryzhkov, 1996: Advantages of rain measurements using specific differential phase. J. Atmos. Oceanic Technol., 13, 454464.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 828 314 27
PDF Downloads 573 192 17