Impact of the Vertical Resolution of Analysis Data on the Estimates of Large-Scale Inertio-Gravity Energy

Nedjeljka Žagar University of Ljubljana, and Center of Excellence SPACE-SI, Ljubljana, Slovenia

Search for other papers by Nedjeljka Žagar in
Current site
Google Scholar
PubMed
Close
,
Koji Terasaki University of Tsukuba, Tsukuba, Japan

Search for other papers by Koji Terasaki in
Current site
Google Scholar
PubMed
Close
, and
Hiroshi L. Tanaka University of Tsukuba, Tsukuba, Japan

Search for other papers by Hiroshi L. Tanaka in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper deals with the large-scale inertio-gravity (IG) wave energy in the operational ECMWF analyses in July 2007. Energy percentages of the IG waves obtained from the standard-pressure-level data are compared to those derived from various discretizations of the model-level data. The results show a small albeit systematic increase of the IG energy percentage as the vertical level density increases from the standard-pressure levels toward the model-level density; the small relative change is explained by the sufficient vertical resolution to resolve the large-scale IG waves in the tropics that make the majority of the global IG energy on large scales. A relatively larger increase of the IG energy is obtained when the mesospheric model levels are included; however, the analyses at these levels in July 2007 are less reliable. Furthermore, two numerical methods for the normal-mode function (NMF) decomposition are shown to provide similar results. The decomposition of atmospheric analyses into the NMF series is proposed as a tool to analyze the spatial and temporal variations of the large-scale equatorial waves and their role in global energetics.

Corresponding author address: Nedjeljka Žagar, Faculty of Mathematics and Physics, Jadranska 19, 1000 Ljubljana, Slovenia. E-mail: nedjeljka.zagar@fmf.uni-lj.si

Abstract

This paper deals with the large-scale inertio-gravity (IG) wave energy in the operational ECMWF analyses in July 2007. Energy percentages of the IG waves obtained from the standard-pressure-level data are compared to those derived from various discretizations of the model-level data. The results show a small albeit systematic increase of the IG energy percentage as the vertical level density increases from the standard-pressure levels toward the model-level density; the small relative change is explained by the sufficient vertical resolution to resolve the large-scale IG waves in the tropics that make the majority of the global IG energy on large scales. A relatively larger increase of the IG energy is obtained when the mesospheric model levels are included; however, the analyses at these levels in July 2007 are less reliable. Furthermore, two numerical methods for the normal-mode function (NMF) decomposition are shown to provide similar results. The decomposition of atmospheric analyses into the NMF series is proposed as a tool to analyze the spatial and temporal variations of the large-scale equatorial waves and their role in global energetics.

Corresponding author address: Nedjeljka Žagar, Faculty of Mathematics and Physics, Jadranska 19, 1000 Ljubljana, Slovenia. E-mail: nedjeljka.zagar@fmf.uni-lj.si
Save
  • Andersson, E., and Coauthors, 2005: Assimilation and modeling of the atmospheric hydrological cycle in the ECMWF forecasting system. Bull. Amer. Meteor. Soc., 86, 387402.

    • Search Google Scholar
    • Export Citation
  • Daley, R., 1983: Spectral characteristics of the ECMWF objective analysis system. ECMWF Tech. Rep. 40, 117 pp.

  • Daley, R., 1991: Atmospheric Data Analysis. Cambridge University Press, 460 pp.

  • Heckley, W. A., 1985: Systematic errors of the ECMWF operational forecasting model in tropical regions. Quart. J. Roy. Meteor. Soc., 111, 709738.

    • Search Google Scholar
    • Export Citation
  • Kasahara, A., 1976: Normal modes of ultralong waves in the atmosphere. Mon. Wea. Rev., 104, 669690.

  • Kasahara, A., 1984: The linear response of a stratified global atmosphere to a tropical thermal forcing. J. Atmos. Sci., 41, 22172239.

    • Search Google Scholar
    • Export Citation
  • Kasahara, A., and K. Puri, 1981: Spectral representation of three-dimensional global data by expansion in normal mode functions. Mon. Wea. Rev., 109, 3751.

    • Search Google Scholar
    • Export Citation
  • Orr, A., P. Bechtold, J. Scinocca, M. Ern, and M. Janiskova, 2010: Improved middle atmosphere climate and forecasts in the ECMWF model through a non-orographic gravity wave drag parametrization. ECMWF Tech. Memo. 625, 30 pp.

  • Salby, M. L., D. L. Hartmann, P. L. Bailey, and J. C. Gille, 1984: Evidence for equatorial Kelvin modes in Nimbus-7 LIMS. J. Atmos. Sci., 41, 220235.

    • Search Google Scholar
    • Export Citation
  • Shutts, G. J., and S. B. Vosper, 2011: Stratospheric gravity waves revealed in NWP model forecasts. Quart. J. Roy. Meteor. Soc., 137, 303317.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and A. Hollingsworth, 2002: Some aspects of the improvement in skill of numerical weather prediction. Quart. J. Roy. Meteor. Soc., 128, 647677.

    • Search Google Scholar
    • Export Citation
  • Staniforth, A., M. Beland, and J. Coté, 1985: An analysis of the vertical structure equation in sigma coordinates. Atmos.–Ocean, 23, 323358.

    • Search Google Scholar
    • Export Citation
  • Tanaka, H., 1985: Global energetics analysis by expansion into three-dimensional normal-mode functions during the FGGE winter. J. Meteor. Soc. Japan, 63, 180200.

    • Search Google Scholar
    • Export Citation
  • Tanaka, H., and E. Kung, 1988: Normal-mode expansion of the general circulation during the FGGE year. J. Atmos. Sci., 45, 37233736.

  • Tanaka, H., and K. Kimura, 1996: Normal-mode energetics analysis and the intercomparison for the recent ECMWF, NMC, and JMA global analyses. J. Meteor. Soc. Japan, 74, 525538.

    • Search Google Scholar
    • Export Citation
  • Terasaki, K., and H. Tanaka, 2007: An analysis of the 3-D atmospheric energy spectra and interactions using analytical vertical structure functions and two reanalyses. J. Meteor. Soc. Japan, 85, 785796.

    • Search Google Scholar
    • Export Citation
  • Terasaki, K., H. Tanaka, and N. Žagar, 2011: Energy spectra of Rossby and gravity waves. SOLA, 11, 4548.

  • Tsuda, T., M. Nishida, C. Rocken, and R. Ware, 2000: A global morphology of gravity wave activity in the stratosphere revealed by the GPS occultation data (GPS/MET). J. Geophys. Res., 105 (D6), 72577273.

    • Search Google Scholar
    • Export Citation
  • Vincent, R., and M. J. Alexander, 2000: Gravity waves in the tropical lower stratosphere: An observational study of seasonal and interannual variability. J. Geophys. Res., 105 (D14), 17 97117 982.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and V. E. Kousky, 1968: Observational evidence of Kelvin waves in the tropical stratosphere. J. Atmos. Sci., 25, 900907.

    • Search Google Scholar
    • Export Citation
  • Wang, L., and M. A. Geller, 2003: Morphology of gravity-wave energy as observed from 4 years (1998–2001) of high vertical resolution U.S. radiosonde data. J. Geophys. Res., 108, 4489, doi:10.1029/2002JD002786.

    • Search Google Scholar
    • Export Citation
  • Wang, L., M. A. Geller, and M. J. Alexander, 2005: Spatial and temporal variations of gravity wave parameters. Part I: Intrinsic frequency, wavelength, and vertical propagation direction. J. Atmos. Sci., 62, 125142.

    • Search Google Scholar
    • Export Citation
  • Žagar, N., N. Gustafsson, and E. Källén, 2004: Variational data assimilation in the tropics: The impact of a background error constraint. Quart. J. Roy. Meteor. Soc., 130, 103125.

    • Search Google Scholar
    • Export Citation
  • Žagar, N., E. Andersson, and M. Fisher, 2005: Balanced tropical data assimilation based on a study of equatorial waves in ECMWF short-range forecast errors. Quart. J. Roy. Meteor. Soc., 131, 9871011.

    • Search Google Scholar
    • Export Citation
  • Žagar, N., J. Tribbia, J. L. Anderson, and K. Raeder, 2009a: Uncertainties of estimates of inertia–gravity energy in the atmosphere. Part I: Intercomparison of four analysis systems. Mon. Wea. Rev., 137, 38373857; Corrigendum, 138, 2476–2477.

    • Search Google Scholar
    • Export Citation
  • Žagar, N., J. Tribbia, J. L. Anderson, and K. Raeder, 2009b: Uncertainties of estimates of inertia–gravity energy in the atmosphere. Part II: Large-scale equatorial waves. Mon. Wea. Rev., 137, 38583873; Corrigendum, 138, 2476–2477.

    • Search Google Scholar
    • Export Citation
  • Žagar, N., J. Tribbia, J. L. Anderson, K. Raeder, and D. T. Kleist, 2010: Diagnosis of systematic analysis increments by using normal modes. Quart. J. Roy. Meteor. Soc., 136, 6176.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 271 185 9
PDF Downloads 119 59 10