• Adlerman, E. J., and K. Droegemeier, 2000: A numerical simulation of cyclic tornadogenesis. Preprints, 20th Conf. on Severe Local Storms, Orlando, FL, Amer. Meteor. Soc., 17.2.

  • Agee, E. M., J. T. Snow, and P. R. Clare, 1976: Multiple vortex features in the tornado cyclone and the occurrence of tornado families. Mon. Wea. Rev., 104, 552563.

    • Search Google Scholar
    • Export Citation
  • Alberty, R. L., D. B. Burgess, and T. Fujita, 1980: Severe weather events of 10 April 1979. Bull. Amer. Meteor. Soc., 61, 10331034.

  • Alexander, C. R., and J. Wurman, 2005: The 30 May 1998 Spencer, South Dakota, storm. Part I: The structural evolution and environment of the tornadoes. Mon. Wea. Rev., 133, 7297.

    • Search Google Scholar
    • Export Citation
  • Armijo, L., 1969: A theory for the determination of wind and precipitation velocities with Doppler radars. J. Atmos. Sci., 26, 570573.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., 2009: The formation and early evolution of the Greensburg, Kansas, tornadic supercell on 4 May 2007. Wea. Forecasting, 24, 899920.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and R. M. Wakimoto, 2003: Mobile radar observations of severe convective storms. Radar and Atmospheric Science:A Collection of Essays in Honor of David Atlas, Meteor. Monogr., No. 52, Amer. Meteor. Soc., 105–136.

  • Bluestein, H. B., M. M. French, R. L. Tanamachi, S. Frasier, K. Hardwick, F. Junyent, and A. L. Pazmany, 2007a: Close-range observations of tornadoes in supercells made with a dual-polarization, X-band, mobile Doppler radar. Mon. Wea. Rev., 135, 15221543.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and Coauthors, 2007b: Preliminary results from the fielding of a disparate triad of mobile Doppler radars to study severe convective storms. Preprints, 33rd Conf. on Radar Meteorology, Cairns, Australia, Amer. Meteor. Soc., 13A.2. [Available online at http://ams.confex.com/ams/pdfpapers/122770.pdf.]

  • Brooks, H. E., 2004: On the relationship of tornado path length and width to intensity. Wea. Forecasting, 19, 310319.

  • Browning, K. A., and R. J. Donaldson, 1963: Airflow and structure of a tornadic storm. J. Atmos. Sci., 20, 533545.

  • Burgess, D. B., V. T. Wood, and R. A. Brown, 1982: Mesocyclone evolution statistics. Proc. 12th Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 422–424.

  • Burgess, D. W., M. A. Magsig, J. Wurman, D. C. Dowell, and Y. Richardson, 2002: Radar observations of the 3 May 1999 Oklahoma City tornado. Wea. Forecasting, 17, 456471.

    • Search Google Scholar
    • Export Citation
  • Church, C. R., J. T. Snow, and E. M. Agee, 1977: Tornado vortex simulation at Purdue University. Bull. Amer. Meteor. Soc., 58, 900908.

    • Search Google Scholar
    • Export Citation
  • Darkow, G. L., and J. C. Roos, 1970: Multiple tornado producing thunderstorms and their apparent cyclic variations in intensity. Proc. 14th Conf. on Radar Meteorology, Tuscon, AZ, Amer. Meteor. Soc., 305–309.

  • Dawson, D. T., II, and G. S. Romine, 2010: A preliminary survey of DSD measurements collected during VORTEX2. Preprints, 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 8A.4. [Available online at http://ams.confex.com/ams/pdfpapers/176115.pdf.]

  • DOC/NOAA, 1998: Service assessment: Spencer, South Dakota, tornado May 30, 1998, NOAA/NWS, 18 pp. [Available online at http://www.nws.noaa.gov/os/assessments/spenccov.htm.]

  • Doviak, R. J., and D. S. Zrnić, 1993: Doppler Weather Radar and Observations. 2nd ed. Academic Press, 562 pp.

  • Dowell, D. C., and H. B. Bluestein, 2002a: The 8 June 1995 McLean, Texas, storm. Part I: Observations of cyclic tornadogenesis. Mon. Wea. Rev., 130, 26262648.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and H. B. Bluestein, 2002b: The 8 June 1995 McLean, Texas, storm. Part II: Cyclic tornado formation, maintenance, and dissipation. Mon. Wea. Rev., 130, 26492670.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., C. R. Alexander, J. M. Wurman, and L. J. Wicker, 2005: Centrifuging of hydrometeors and debris in tornadoes: Radar-reflectivity patterns and wind-measurement errors. Mon. Wea. Rev., 133, 15011524.

    • Search Google Scholar
    • Export Citation
  • French, M. M., H. B. Bluestein, D. C. Dowell, L. J. Wicker, M. R. Kramar, and A. L. Pazmany, 2006: The 15 May 2003 Shamrock, Texas, supercell: A dual-Doppler analysis and EnKF data-assimilation experiment. Preprints, 23rd Conf. on Severe Local Storms, St. Louis, MO, Amer. Meteor. Soc., 14.6A.

  • French, M. M., H. B. Bluestein, D. C. Dowell, L. J. Wicker, M. R. Kramar, and A. L. Pazmany, 2008: High-resolution, mobile Doppler radar observations of cyclic mesocyclogenesis in a supercell. Mon. Wea. Rev., 136, 49975016.

    • Search Google Scholar
    • Export Citation
  • French, M. M., H. B. Bluestein, L. J. Wicker, D. C. Dowell, and M. R. Kramar, 2009: An example of the use of mobile, Doppler radar data for tornado verification. Wea. Forecasting, 24, 884891.

    • Search Google Scholar
    • Export Citation
  • Fujita, T., 1960: A detailed analysis of the Fargo tornadoes of June 20, 1957. U.S. Government Printing Office, Research Paper 42, U.S. Weather Bureau, Washington, DC, 67 pp.

  • Fujita, T., 1963: Analytical mesometeorology: A review. Severe Local Storms, Meteor. Monogr., No. 27, Amer. Meteor. Soc., 77–125.

  • Gunn, R., and G. D. Kinzer, 1949: The terminal velocity of fall for water droplets in stagnant air. J. Meteor., 6, 243248.

  • Juyent, F., 2003: Design, development and initial field deployment of an X band polarimetric, Doppler radar. M.S.E.E. thesis, Dept. of Electrical and Computer Engineering, University of Massachusetts—Amherst, 121 pp.

  • Junyent, F., S. Frasier, D. J. McLaughlin, V. Chandrasekar, H. Bluestein, and M. French, 2005: High resolution dual-polarization radar observation of tornados: Implications for radar development and tornado detection. Proc. Geoscience and Remote Sensing Symp., Vol. 3, Seoul, South Korea, IEEE Int., 2034–2037.

  • Kramar, M. R., H. B. Bluestein, A. L. Pazmany, and J. D. Tuttle, 2005: The “owl horn” radar signature in developing southern Plains supercells. Mon. Wea. Rev., 133, 26082634.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2011: Precipitation properties of supercell hook echoes. Electron. J. Severe Storms Meteor., 6 (5). [Available online at http://www.ejssm.org/ojs/index.php/ejssm/article/view/93/65.]

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 19401961.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2009: Storm-relative helicity revealed from polarimetric radar measurements. J. Atmos. Sci., 66, 667685.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., J. Snyder, A. Ryzhkov, D. Zrnić, S. Frasier, and H. Bluestein, 2008: Comparison of polarimetric radar observations of tornadic supercells at S, C, and X bands. Preprints, 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 5.5. [Available online at http://ams.confex.com/ams/pdfpapers/142020.pdf.]

  • LaDue, J. G., and E. Mahoney, 2006: Implementing the new enhanced Fujita Scale within the NWS. Preprints, 23rd Conf. on Severe Local Storms, St. Louis, MO, Amer. Meteor. Soc., 5.5. [Available online at http://ams.confex.com/ams/pdfpapers/115420.pdf.]

  • Lee, W.-C., and J. Wurman, 2005: Diagnosed three-dimensional axisymmetric structure of the Mulhall tornado on 3 May 1999. J. Atmos. Sci., 62, 23732393.

    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., and C. A. Doswell, 1979: Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev., 107, 11841197.

    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., and M. Umscheid, 2008: The Greensburg, Kansas tornadic storm: A storm of extremes. Preprints, 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 2.4. [Available online at http://ams.confex.com/ams/pdfpapers/141811.pdf.]

  • Lewellen, W. S., 1993: Tornado vortex theory. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 19–39

  • MacGorman, D. R., and D. W. Burgess, 1994: Positive cloud-to-ground lightning in tornadic storms and hailstorms. Mon. Wea. Rev., 122, 16711697.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and Coauthors, 2008: TELEX: The Thunderstorm Electrification and Lightning Experiment. Bull. Amer. Meteor. Soc., 89, 9971013.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., J. M. Straka, and E. N. Rasmussen, 2002: Direct surface thermodynamic observations within the rear-flank downdrafts of nontornadic and tornadic supercells. Mon. Wea. Rev., 130, 16921721.

    • Search Google Scholar
    • Export Citation
  • Marquis, J., Y. Richardson, P. Markowski, D. Dowell, and J. Wurman, 2012: Tornado maintenance investigated with high-resolution dual-Doppler and EnKF analysis. Mon. Wea. Rev., 140, 327.

    • Search Google Scholar
    • Export Citation
  • Marshall, T. P., D. McCarthy, J. LaDue, J. Wurman, C. Alexander, P. Robinson, and K. Kosiba, 2008: Damage survey of the Greensburg, KS tornado. Preprints, 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 8B.3. [Available online at http://ams.confex.com/ams/pdfpapers/141534.pdf.]

  • McCarthy, D., L. Ruthi, and J. Hutton, 2007: The Greensburg, KS tornado. Preprints, 22nd Conf. on Weather Analysis and Forecasting, Park City, UT, Amer. Meteor. Soc., J2.4. [Available online at http://ams.confex.com/ams/pdfpapers/126927.pdf.]

  • Miller, L. J., and S. M. Fredrick, 1993: CEDRIC: Custom Editing and Display of Reduced Information in Cartesian space. Reference Manual, Mesoscale and Microscale Meteorology Division, Boulder, CO, 130 pp. [Available online at http://www.eol.ucar.edu/instrumentation/airborne-instruments/eldora/eldora-help-center/manual/cedric-reference-manual/cedric_doc.pdf.]

  • National Climatic Data Center, cited 2009: Storm Events Database. [Available online at http://www.ncdc.noaa.gov/stormevents/.]

  • Oye, D., and M. Case, 1995: REORDER: A program for gridding radar data. Installation and use manual for the UNIX version. Atmospheric Technology Division, Boulder, CO, 20 pp. [Available online at http://www.eol.ucar.edu/instrumentation/airborne-instruments/eldora/eldora-help-center/manual/reorder-reference-manual/unixreorder.pdf.]

  • Oye, D., C. Mueller, and S. Smith, 1995: Software for radar translation, visualization, editing, and interpolation. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 359–361.

  • Palmer, R. D., and Coauthors, 2011: Observations of the 10 May 2010 tornado outbreak using OU-PRIME: Potential for new science with high-resolution polarimetric radar. Bull. Amer. Meteor. Soc., 92, 871891.

    • Search Google Scholar
    • Export Citation
  • Pazmany, A. L., and H. B. Bluestein, 2011: Mobile rapid-scanning X-band polarimetric (RaXPol) Doppler radar system. Preprints, 35th Conf. on Radar Meteorology, Pittsburgh, PA, Amer. Meteor. Soc., 16B.2. [Available online at http://ams.confex.com/ams/35Radar/webprogram/Paper191294.html.]

  • Romine, G. S., D. W. Burgess, and R. B. Wilhelmson, 2008: A dual-polarization-radar-based assessment of the 8 May 2003 Oklahoma City area tornadic supercell. Mon. Wea. Rev., 136, 28492870.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, and D. S. Zrnic, 2005: Polarimetric tornado detection. J. Appl. Meteor., 44, 557570.

  • Schuur, T. J., A. V. Ryzhkov, D. S. Zrnić, and M. Schönhuber, 2001: Drop size distributions measured by a 2D video disdrometer: Comparison with dual-polarization radar data. J. Appl. Meteor., 40, 10191034.

    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., H. B. Bluestein, G. Zhang, and S. J. Frasier, 2010: Attenuation correction and hydrometeor classification of high-resolution, X-band, dual-polarized mobile radar measurements in severe convective storms. J. Atmos. Oceanic Technol., 27, 19792001.

    • Search Google Scholar
    • Export Citation
  • Speheger, D. A., C. A. Doswell, and G. J. Stumpf, 2002: The tornadoes of 3 May 1999: Event verification in central Oklahoma and related issues. Wea. Forecasting, 17, 362381.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., and C. A. Doswell, 2000: Radar data objective analysis. J. Atmos. Oceanic Technol., 17, 105120.

  • Van Den Broeke, M. S., J. M. Straka, and E. N. Rasmussen, 2008: Polarimetric radar observations at low levels during tornado life cycles in a small sample of classic Southern Plains supercells. J. Appl. Meteor. Climatol., 47, 12321247.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., W.-C. Lee, H. B. Bluestein, C.-H. Liu, and P. H. Hildebrand, 1996: ELDORA observations during VORTEX 95. Bull. Amer. Meteor. Soc., 77, 14651481.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., J. B. Klemp, and J. W. Wilson, 1983: Dynamic interpretation of notches, WERs, and mesocyclones simulated in a numerical cloud model. Proc.21st Conf. on Radar Meteorology, Edmonton, AB, Canada, Amer. Meteor. Soc., 39–43.

  • Wurman, J., and S. Gill, 2000: Finescale radar observations of the Dimmitt, Texas (2 June 1995), tornado. Mon. Wea. Rev., 128, 21352164.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., Y. Richardson, C. Alexander, S. Weygandt, and P. F. Zhang, 2007: Dual-Doppler and single-Doppler analysis of a tornadic storm undergoing mergers and repeated tornadogenesis. Mon. Wea. Rev., 135, 736758.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., L. Wicker, Y. Richardson, P. Markowski, D. Dowell, D. Burgess, and H. Bluestein, 2010: VORTEX2: The verification of the origins of rotation in tornadoes experiment. Preprints, 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 5.1. [Available online at http://ams.confex.com/ams/pdfpapers/176068.pdf.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 18 18 18
PDF Downloads 10 10 10

Mobile, X-band, Polarimetric Doppler Radar Observations of the 4 May 2007 Greensburg, Kansas, Tornadic Supercell

View More View Less
  • 1 Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma
  • | 2 School of Meteorology, University of Oklahoma, Norman, Oklahoma
  • | 3 Microwave Remote Sensing Laboratory, University of Massachusetts—Amherst, Amherst, Massachusetts
Restricted access

Abstract

On 4 May 2007, a supercell produced an EF-5 tornado that severely damaged the town of Greensburg, Kansas. Volumetric data were collected in the “Greensburg storm” by the University of Massachusetts X-band, mobile, polarimetric Doppler radar (UMass X-Pol) for 70 min; 10 tornadoes were detected. This mobile Doppler radar dataset is one of only a few documenting an EF-5 tornado and the supercell’s transition from short-track, cyclic tornado production (mode 1) to long-track tornado production (mode 2). Using bootstrap confidence intervals, it is determined that the mode-2 tornadoes moved in the same direction as the supercell vault. In contrast, the mode-1 tornadoes moved to the left with respect to the vault.

From polarimetric data collected in this storm, the authors infer the presence of large, oblate drops (high ZDR, high ρhv) in the forward flank and surrounding some of the tornadoes. The authors speculate that the weak-echo column (WEC) in the Greensburg tornado, which extended above 10 km AGL, was caused primarily by the centrifuging of hydrometeors at low levels and rapid upward transport of relatively scatterer-free air at upper levels. This WEC was collocated at low levels with a low-ZDR, low-ρhv column, indicating lofted debris.

Dual-Doppler analyses, generated at ~10-min intervals using data from UMass X-Pol and the Dodge City, Kansas, Weather Surveillance Radar-1988 Doppler (WSR-88D), were used to locate updrafts and downdrafts near the hook echo. In the immediate vicinity of tornadoes, diminished ZDR values downstream of analyzed downdrafts may indicate the ingestion by tornadoes of relatively small drops, fallout of larger drops, or a combination of both.

Corresponding author address: Robin L. Tanamachi, Center for Analysis and Prediction of Storms, University of Oklahoma, 120 David L. Boren Blvd., Suite 2500, Norman, OK 73072. E-mail: rtanamachi@ou.edu

Abstract

On 4 May 2007, a supercell produced an EF-5 tornado that severely damaged the town of Greensburg, Kansas. Volumetric data were collected in the “Greensburg storm” by the University of Massachusetts X-band, mobile, polarimetric Doppler radar (UMass X-Pol) for 70 min; 10 tornadoes were detected. This mobile Doppler radar dataset is one of only a few documenting an EF-5 tornado and the supercell’s transition from short-track, cyclic tornado production (mode 1) to long-track tornado production (mode 2). Using bootstrap confidence intervals, it is determined that the mode-2 tornadoes moved in the same direction as the supercell vault. In contrast, the mode-1 tornadoes moved to the left with respect to the vault.

From polarimetric data collected in this storm, the authors infer the presence of large, oblate drops (high ZDR, high ρhv) in the forward flank and surrounding some of the tornadoes. The authors speculate that the weak-echo column (WEC) in the Greensburg tornado, which extended above 10 km AGL, was caused primarily by the centrifuging of hydrometeors at low levels and rapid upward transport of relatively scatterer-free air at upper levels. This WEC was collocated at low levels with a low-ZDR, low-ρhv column, indicating lofted debris.

Dual-Doppler analyses, generated at ~10-min intervals using data from UMass X-Pol and the Dodge City, Kansas, Weather Surveillance Radar-1988 Doppler (WSR-88D), were used to locate updrafts and downdrafts near the hook echo. In the immediate vicinity of tornadoes, diminished ZDR values downstream of analyzed downdrafts may indicate the ingestion by tornadoes of relatively small drops, fallout of larger drops, or a combination of both.

Corresponding author address: Robin L. Tanamachi, Center for Analysis and Prediction of Storms, University of Oklahoma, 120 David L. Boren Blvd., Suite 2500, Norman, OK 73072. E-mail: rtanamachi@ou.edu
Save