A Brief Critique of a Theory Used to Interpret the Infrasound of Tornadic Thunderstorms

David A. Schecter NorthWest Research Associates, Redmond, Washington

Search for other papers by David A. Schecter in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

It has been proposed that the 0.5–10-Hz infrasound emitted by a severe storm is primarily generated by the axisymmetric oscillations of a tornado. This interpretation is challenged by a critical review of its theoretical foundation. A basic linear analysis shows that the principal axisymmetric oscillations of a subsonic, columnar vortex (axisymmetric Kelvin modes) cannot excite acoustic radiation. Numerical experiments further show that axisymmetric radiation is shaped primarily by the impulse that triggers the emission, not the properties of the vortex.

Corresponding author address: David A. Schecter, NorthWest Research Associates, CoRA Division, 3380 Mitchell Lane, Boulder, CO 80301. E-mail: schecter@nwra.com

Abstract

It has been proposed that the 0.5–10-Hz infrasound emitted by a severe storm is primarily generated by the axisymmetric oscillations of a tornado. This interpretation is challenged by a critical review of its theoretical foundation. A basic linear analysis shows that the principal axisymmetric oscillations of a subsonic, columnar vortex (axisymmetric Kelvin modes) cannot excite acoustic radiation. Numerical experiments further show that axisymmetric radiation is shaped primarily by the impulse that triggers the emission, not the properties of the vortex.

Corresponding author address: David A. Schecter, NorthWest Research Associates, CoRA Division, 3380 Mitchell Lane, Boulder, CO 80301. E-mail: schecter@nwra.com
Save
  • Abdullah, A. J., 1966: The “musical” sound emitted by a tornado. Mon. Wea. Rev., 94, 213220.

  • Abramowitz, M., and A. Stegun, 1972: Handbook of Mathematical Functions. Dover, 1046 pp.

  • Akhalkatsi, M., and G. Gogoberidze, 2009: Infrasound generation by tornadic supercell storms. Quart. J. Roy. Meteor. Soc., 135, 935940.

    • Search Google Scholar
    • Export Citation
  • Akhalkatsi, M., and G. Gogoberidze, 2011: Spectrum of infrasound radiation from supercell storms. Quart. J. Roy. Meteor. Soc., 135, 229235.

    • Search Google Scholar
    • Export Citation
  • Arendt, S., D. C. Fritts, and O. Andreassen, 1997: The initial value problem for Kelvin vortex waves. J. Fluid Mech., 344, 181212.

  • Batchelor, G. K., and A. E. Gill, 1962: Analysis of the stability of axisymmetric jets. J. Fluid Mech., 14, 529551.

  • Bedard, A. J., Jr., 2005: Low-frequency atmospheric acoustic energy associated with vortices produced by thunderstorms. Mon. Wea. Rev., 133, 241263.

    • Search Google Scholar
    • Export Citation
  • Bedard, A. J., Jr., B. W. Bartram, A. N. Keane, D. C. Welsh, and R. T. Nishiyama, 2004: The infrasound network (ISNet): Background, design, details, and display capability as a 88D adjunct tornado detection tool. Preprints, 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., 1.1. [Available online at http://ams.confex.com/ams/11aram22sls/techprogram/paper_81656.htm.]

  • Bowman, H. S., and A. J. Bedard Jr., 1971: Observations of infrasound and subsonic disturbances related to severe weather. Geophys. J. Roy. Astron. Soc., 26, 215242.

    • Search Google Scholar
    • Export Citation
  • Broadbent, E. G., 1984: Stability of a compressible two-dimensional vortex under a three-dimensional perturbation. Proc. Roy. Soc. London, 392A, 279299.

    • Search Google Scholar
    • Export Citation
  • Fabre, D., D. Sipp, and L. Jacquin, 2006: Kelvin waves and the singular modes of the Lamb–Oseen vortex. J. Fluid Mech., 551, 235274.

    • Search Google Scholar
    • Export Citation
  • Georges, T. M., and G. E. Greene, 1975: Infrasound from convective storms. Part IV: Is it useful for warning? J. Appl. Meteor., 14, 13031316.

    • Search Google Scholar
    • Export Citation
  • Howe, M. S., 2003: Theory of Vortex Sound. Cambridge University Press, 216 pp.

  • Kelvin, L., 1880: On the vibrations of a columnar vortex. Philos. Mag., 10, 155168.

  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 10701093.

    • Search Google Scholar
    • Export Citation
  • Martin, J. E., and E. Meiburg, 1994: On the stability of the swirling jet shear layer. Phys. Fluids, 6, 424426.

  • Powell, A., 1964: Theory of vortex sound. J. Acoust. Soc. Amer., 36, 177195.

  • Roberts, P. H., 2003: On vortex waves in compressible fluids. I. The hollow core vortex. Proc. Roy. Soc. London, 459A, 331352.

  • Rotunno, R., 1978: A note on the stability of a cylindrical vortex sheet. J. Fluid Mech., 87, 761771.

  • Saffman, P. G., 1992. Vortex Dynamics. Cambridge University Press, 311 pp.

  • Schecter, D. A., 2011: A method for diagnosing the sources of infrasound in convective storm simulations. J. Appl. Meteor. Climatol., 50, 25262542.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., and M. E. Nicholls, 2010: Generation of infrasound by evaporating hydrometeors in a cloud model. J. Appl. Meteor. Climatol., 49, 664675.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., M. E. Nicholls, J. Persing, A. J. Bedard Jr., and R. A. Pielke Sr., 2008: Infrasound emitted by tornado-like vortices: Basic theory and a numerical comparison to the acoustic radiation of a single-cell thunderstorm. J. Atmos. Sci., 65, 685713.

    • Search Google Scholar
    • Export Citation
  • Schmitter, E. D., 2010: Modeling tornado dynamics and the generation of infrasound, electric and magnetic fields. Nat. Hazards Earth Syst. Sci., 10, 295298.

    • Search Google Scholar
    • Export Citation
  • Sozou, C., 1987: Adiabatic perturbations in an unbounded Rankine vortex. Proc. Roy. Soc. London, Math. Phys. Sci., 411A, 207224.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 199 102 14
PDF Downloads 113 47 11