The Influence of Shallow Convection on Tropical Cyclone Track Forecasts

Ryan D. Torn Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Ryan D. Torn in
Current site
Google Scholar
PubMed
Close
and
Christopher A. Davis National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Christopher A. Davis in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

ABSTRACT

Accurate tropical cyclone (TC) track forecasts depend on having skillful numerical model predictions of the environmental wind field. Given that wind and temperature are related through thermal wind balance, structural errors in the processes that determine the tropical temperature profile, such as shallow convection, can therefore lead to biases in TC position. This paper evaluates the influence of shallow convection on Advanced Hurricane Weather Research and Forecasting Model (AHW) TC track forecasts by cycling an ensemble data assimilation during a 1-month period in 2008 where cumulus convection is parameterized on the coarse-resolution domain using the Kain–Fritsch scheme or the modified Tiedtke scheme, which contains a more appropriate treatment of oceanic shallow convection. Short-term forecasts with the Kain–Fritsch scheme are characterized by a 1-K, 700-hPa temperature bias over much of the western Atlantic Ocean, which is attributed to a lack of shallow convection within that scheme. In turn, the horizontal gradients in this temperature bias are associated with wind biases in the region where multiple TCs move during this period. By contrast, the Tiedtke scheme does not suffer from this temperature bias, thus the wind biases are smaller. AHW forecasts initialized from the data assimilation system that uses the Tiedtke scheme have track errors that are up to 25% smaller than forecasts initialized from the data assimilation system that uses Kain–Fritsch.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Ryan Torn, University at Albany, State University of New York, ES 351, 1400 Washington Ave., Albany, NY 12222. E-mail: torn@atmos.albany.edu

ABSTRACT

Accurate tropical cyclone (TC) track forecasts depend on having skillful numerical model predictions of the environmental wind field. Given that wind and temperature are related through thermal wind balance, structural errors in the processes that determine the tropical temperature profile, such as shallow convection, can therefore lead to biases in TC position. This paper evaluates the influence of shallow convection on Advanced Hurricane Weather Research and Forecasting Model (AHW) TC track forecasts by cycling an ensemble data assimilation during a 1-month period in 2008 where cumulus convection is parameterized on the coarse-resolution domain using the Kain–Fritsch scheme or the modified Tiedtke scheme, which contains a more appropriate treatment of oceanic shallow convection. Short-term forecasts with the Kain–Fritsch scheme are characterized by a 1-K, 700-hPa temperature bias over much of the western Atlantic Ocean, which is attributed to a lack of shallow convection within that scheme. In turn, the horizontal gradients in this temperature bias are associated with wind biases in the region where multiple TCs move during this period. By contrast, the Tiedtke scheme does not suffer from this temperature bias, thus the wind biases are smaller. AHW forecasts initialized from the data assimilation system that uses the Tiedtke scheme have track errors that are up to 25% smaller than forecasts initialized from the data assimilation system that uses Kain–Fritsch.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Ryan Torn, University at Albany, State University of New York, ES 351, 1400 Washington Ave., Albany, NY 12222. E-mail: torn@atmos.albany.edu
Save
  • Aberson, S. D., 2010: 10 years of hurricane synoptic surveillance (1997–2006). Mon. Wea. Rev., 138, 15361549.

  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903.

  • Anderson, J. L., 2009: Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus, 61A, 7283.

  • Anderson, J. L., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. Arellano, 2009: The Data Assimilation Research Testbed: A community data assimilation facility. Bull. Amer. Meteor. Soc., 90, 12831296.

    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., and Coauthors, 2008: The COSMIC/FORMOSAT-3 Mission: Early results. Bull. Amer. Meteor. Soc., 89, 313333.

  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large scale environment. Part I. J. Atmos. Sci., 31, 674701.

    • Search Google Scholar
    • Export Citation
  • Barker, D. M., W. Huang, Y. R. Guo, A. J. Bourgeois, and Q. N. Xiao, 2004: A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Wea. Rev., 132, 897914.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., I. Ginis, R. Tuleya, B. Thomas, and T. Marchok, 2007: The operational GFDL coupled hurricane–ocean prediction system and a summary of its performance. Mon. Wea. Rev., 135, 39653989.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., and D. A. Randall, 2007: Observed characteristics of the MJO relative to maximum rainfall. J. Atmos. Sci., 64, 23322354.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112, 677691.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., J. R. McCaa, and H. Grenier, 2004: A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part I: Description and 1D results. Mon. Wea. Rev., 132, 864882.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., and W. M. Gray, 1982: Tropical cyclone movement and surrounding flow relationships. Mon. Wea. Rev., 110, 13541374.

  • Chen, Y., and C. Snyder, 2007: Assimilating vortex position with an ensemble Kalman filter. Mon. Wea. Rev., 135, 18281845.

  • Chou, M.-D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. Tech. Rep., NASA Tech. Memo. 104606, Vol. 3, 85 pp.

  • Davis, C., and Coauthors, 2008: Prediction of landfalling hurricanes with the advanced hurricane WRF model. Mon. Wea. Rev., 136, 19902005.

    • Search Google Scholar
    • Export Citation
  • Davis, C., W. Wang, J. Dudhia, and R. Torn, 2010: Does increased horizontal resolution improve hurricane wind forecasts. Wea. Forecasting, 25, 18261841.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., Y. Wang, S.-P. Xie, and T. Miyama, 2006: The effect of shallow convection on the eastern Pacific climate in a coupled model. Geophys. Res. Lett., 33, L17713, doi:10.1029/2006GL026715.

    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., J. A. Zhang, J. R. French, C. McCormick, and P. G. Black, 2007: Turbulent fluxes in the hurricane boundary layer. Part II: Latent heat flux. J. Atmos. Sci., 64, 11031115.

    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., and C. S. Velden, 2004: The impact of the Saharan air layer on Atlantic tropical cyclone activity. Bull. Amer. Meteor. Soc., 85, 353365.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1989: The finite-amplitude nature of tropical cyclogenesis. J. Atmos. Sci., 46, 34313456.

  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757.

    • Search Google Scholar
    • Export Citation
  • George, J. E., and W. M. Gray, 1976: Tropical cyclone motion and surrounding parameter relationships. J. Appl. Meteor., 15, 12521264.

    • Search Google Scholar
    • Export Citation
  • Han, J., and H.-L. Pan, 2011: Revision of convection and vertical diffusion schemes in the NCEP global forecast system. Wea. Forecasting, 26, 520533.

    • Search Google Scholar
    • Export Citation
  • Hogan, T. F., and R. L. Pauley, 2007: The impact of convective momentum transport on tropical cyclone track forecasts using the Emanuel Cumulus Parameterization. Mon. Wea. Rev., 135, 11951207.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1983: Tropical cyclone motion: Environmental interaction plus beta effect. J. Atmos. Sci., 40, 328342.

  • Hong, S. Y., J. Dudhia, and S. H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120.

    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 23972418.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor. Climatol., 43, 170181.

  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, doi:10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. J. Geophys. Res., 102, 16 66316 682.

    • Search Google Scholar
    • Export Citation
  • O’Shay, A. J., and T. N. Krishnamurti, 2004: An examination of a model’s components during tropical cyclone recurvature. Mon. Wea. Rev., 132, 11431166.

    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., and Coauthors, 2009: Advances and challenges at the National Hurricane Center. Wea. Forecasting, 24, 395419.

  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF Version 2. Tech. Rep. 468+STR, National Center for Atmospheric Research, Boulder, CO, 88 pp.

  • Straub, K. H., and G. N. Kiladis, 2002: Observations of a convectively coupled Kelvin wave in the eastern Pacific ITCZ. J. Atmos. Sci., 59, 3053.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., 2010: Performance of a mesoscale ensemble Kalman filter (EnKF) during the NOAA High-Resolution Hurricane Test. Mon. Wea. Rev., 138, 43754392.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and C. Snyder, 2012: Uncertainty of tropical cyclone best-track information. Wea. Forecasting, 27, 715729.

  • Torn, R. D., G. J. Hakim, and C. Snyder, 2006: Boundary conditions for limited-area ensemble Kalman filters. Mon. Wea. Rev., 134, 24902502.

    • Search Google Scholar
    • Export Citation
  • Velden, C., and Coauthors, 2005: Recent innovations in deriving tropospheric winds from meteorological satellites. Bull. Amer. Meteor. Soc., 86, 205223.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., S.-P. Xie, H.-M. Hu, and B. Wang, 2004: Regional model simulations of marine boundary layer clouds over the Southeast Pacific off South America. Part I: Control experiment. Mon. Wea. Rev., 132, 274296.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., Y. Wang, and K. Hamilton, 2011: Improved representation of boundary layer clouds over the Southeast Pacific in WRF-ARW using a modified Tiedtke cumulus parameterization scheme. Mon. Wea. Rev., 139, 34893513.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., W. M. Drennan, P. G. Black, and R. French, 2009: Turbulence structure of the hurricane boundary layer between the outer rainbands. J. Atmos. Sci., 66, 24552467.

    • Search Google Scholar
    • Export Citation
  • Zhu, H., and R. K. Smith, 2002: The importance of three physical processes in a minimal three-dimensional tropical cyclone model. J. Atmos. Sci., 59, 18251840.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 728 364 176
PDF Downloads 373 119 11