Impacts of Convectively Coupled Kelvin Waves on Environmental Conditions for Atlantic Tropical Cyclogenesis

Michael J. Ventrice Department of Atmospheric and Environmental Science, University at Albany, State University of New York, Albany, New York

Search for other papers by Michael J. Ventrice in
Current site
Google Scholar
PubMed
Close
,
Christopher D. Thorncroft Department of Atmospheric and Environmental Science, University at Albany, State University of New York, Albany, New York

Search for other papers by Christopher D. Thorncroft in
Current site
Google Scholar
PubMed
Close
, and
Carl J. Schreck III Cooperative Institute for Climate and Satellites, North Carolina State University, Asheville, North Carolina

Search for other papers by Carl J. Schreck III in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

High-amplitude convectively coupled equatorial atmospheric Kelvin waves (CCKWs) are explored over the tropical Atlantic during the boreal summer (1989–2009). Focus is given to the atmospheric environmental conditions that are important for tropical cyclogenesis.

CCKWs are characterized by deep westerly vertical wind shear to the east of its convectively active phase and easterly vertical wind shear to the west of it. This dynamical signature increases vertical wind shear over the western tropical Atlantic ahead of the convectively active phase, and reduces vertical wind shear after its passage. The opposite is true over the eastern tropical Atlantic where the climatological vertical wind shear is easterly.

Positive total column water vapor (TCWV) anomalies progress eastward with the convectively active phase of the CCKW, whereas negative TCWV anomalies progress eastward with the convectively suppressed phase. During the passage of the convectively active phase of the CCKW, a zonally oriented strip of low-level cyclonic relative vorticity is generated over the tropical Atlantic. Two days later, this strip becomes more wavelike and moves back toward the west. This signature resembles a train of westward-moving easterly waves and suggests CCKWs may influence such events.

Strong CCKWs over the tropical Atlantic tend to occur during the decay of the active convection associated with the Madden–Julian oscillation over the Pacific. This relationship could be used to provide better long-range forecasts of tropical convective patterns and Atlantic tropical cyclogenesis.

Corresponding author address: Michael Ventrice, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222. E-mail: mventrice@albany.edu

Abstract

High-amplitude convectively coupled equatorial atmospheric Kelvin waves (CCKWs) are explored over the tropical Atlantic during the boreal summer (1989–2009). Focus is given to the atmospheric environmental conditions that are important for tropical cyclogenesis.

CCKWs are characterized by deep westerly vertical wind shear to the east of its convectively active phase and easterly vertical wind shear to the west of it. This dynamical signature increases vertical wind shear over the western tropical Atlantic ahead of the convectively active phase, and reduces vertical wind shear after its passage. The opposite is true over the eastern tropical Atlantic where the climatological vertical wind shear is easterly.

Positive total column water vapor (TCWV) anomalies progress eastward with the convectively active phase of the CCKW, whereas negative TCWV anomalies progress eastward with the convectively suppressed phase. During the passage of the convectively active phase of the CCKW, a zonally oriented strip of low-level cyclonic relative vorticity is generated over the tropical Atlantic. Two days later, this strip becomes more wavelike and moves back toward the west. This signature resembles a train of westward-moving easterly waves and suggests CCKWs may influence such events.

Strong CCKWs over the tropical Atlantic tend to occur during the decay of the active convection associated with the Madden–Julian oscillation over the Pacific. This relationship could be used to provide better long-range forecasts of tropical convective patterns and Atlantic tropical cyclogenesis.

Corresponding author address: Michael Ventrice, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222. E-mail: mventrice@albany.edu
Save
  • Agudelo, P. A., C. D. Hoyos, J. A. Curry, and P. J. Webster, 2010: Probabilistic discrimination between large-scale environments of intensifying and decaying African easterly waves. Climate Dyn., 36, 13791401.

    • Search Google Scholar
    • Export Citation
  • Aiyyer, A., and C. D. Thorncroft, 2011: Interannual-to-multidecadal variability of vertical shear and tropical cyclone activity. J. Climate, 24, 29492962.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic, 489 pp.

  • Braun, S. A., 2010: Reevaluating the role of the Saharan air layer in Atlantic tropical cyclogenesis and evolution. Mon. Wea. Rev., 138, 20072037.

    • Search Google Scholar
    • Export Citation
  • Dias, J., and O. Pauluis, 2009: Convectively coupled waves propagating along an equatorial ITCZ. J. Atmos. Sci., 66, 22372255.

  • Dunion, J. P., and C. S. Velden, 2004: The impact of the Saharan air layer on Atlantic tropical cyclone activity. Bull. Amer. Meteor. Soc., 85, 353365.

    • Search Google Scholar
    • Export Citation
  • Ferguson, J., B. Khouider, and M. Namazi, 2009: Two-way interactions between equatorially-trapped waves and the barotropic flow. Chin. Ann. Math., 30, 539568.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462.

  • Goldenberg, S. B., and L. J. Shapiro, 1996: Physical mechanisms for the association of El Niño and West African rainfall with Atlantic major hurricane activity. J. Climate, 9, 11691187.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700.

  • Gray, W. M., 1984: Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb Quasi-Biennial Oscillation influences. Mon. Wea. Rev., 112, 16491668.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1988: Environmental influences on tropical cyclones. Aust. Meteor. Mag., 36, 127139.

  • Gray, W. M., 1998: The formation of tropical cyclones. Meteor. Atmos. Phys., 67, 3769.

  • Gruber, A., 1974: The wavenumber-frequency spectra of satellite-measured brightness in the tropics. J. Atmos. Sci., 31, 16751680.

  • Hopsch, S. B., C. D. Thorncroft, and K. R. Tyle, 2010: Analysis of African easterly wave structures and their role influencing tropical cyclogenesis. Mon. Wea. Rev., 138, 13991419.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and B. Wang, 2010: Spatiotemporal wavelet transform and the multiscale behavior of the Madden–Julian oscillation. J. Climate, 23, 38143834.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian Oscillation. J. Atmos. Sci., 62, 27902809.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., C. D.. Thorncroft, and N. M. J. Hall, 2006: Three dimensional structure and dynamics of African easterly waves. Part I: Observations. J. Atmos. Sci., 63, 22122230.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, doi:10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., 2010: On the Madden–Julian Oscillation–Atlantic hurricane relationship. J. Climate, 23, 282293.

  • Klotzbach, P. J., and W. M. Gray, 2008: Multidecadal variability in North Atlantic tropical cyclone activity. J. Climate, 21, 39293935.

    • Search Google Scholar
    • Export Citation
  • Laing, A. G., R. E. Carbone, V. Levizzani, and J. D. Tuttle, 2011: Cycles and propagation of deep convection over equatorial Africa. Mon. Wea. Rev., 139, 28322853.

    • Search Google Scholar
    • Export Citation
  • Leroux, S., N. Hall, and G. Kiladis, 2010: A climatological study of transient-mean flow interactions over West Africa. Quart. J. Roy. Meteor. Soc., 136, 397410.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing long-wave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., G. N. Kiladis, L. M. V. Carvalho, C. Jones, C. S. Vera, I. Bladé, and D. Allured, 2009: Origin of convectively coupled Kelvin waves over South America. J. Climate, 22, 300315.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 26652690.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1967: Planetary waves on beta-planes. Mon. Wea. Rev., 95, 441451.

  • Lindzen, R. S., and T. Matsuno, 1968: On the nature of large scale wave disturbances in the equatorial lower stratosphere. J. Meteor. Soc. Japan, 46, 215221.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and J. Shaman, 2008: Intraseasonal variability of the West African Monsoon and Atlantic ITCZ. J. Climate, 21, 28982918.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543.

  • Mekonnen, A., C. D. Thorncroft, A. R. Aiyyer, and G. N. Kiladis, 2008: Convectively coupled Kelvin waves over tropical Africa during the boreal summer: Structure and variability. J. Climate, 21, 66496667.

    • Search Google Scholar
    • Export Citation
  • Mounier, F., G. N. Kiladis, and S. Janicot, 2007: Analysis of the dominant mode of convectively coupled Kelvin waves in the West African monsoon. J. Climate, 20, 14871503.

    • Search Google Scholar
    • Export Citation
  • Nieto Ferreira, R., and W. H. Schubert, 1997: Barotropic aspects of ITCZ breakdown. J. Atmos. Sci., 54, 261285.

  • Nolan, D. S., and M. G. McGauley, 2012: Tropical cyclogenesis in wind shear: Climatological relationships and physical process. Cyclones: Formation, Triggers, and Control, K. Oouchi and H. Fudeyasu, Eds., Nova Science Publishers.

  • Nguyen, H., and J.-P. Duvel, 2008: Synoptic wave perturbations and convective systems over equatorial Africa. J. Climate, 21, 63726388.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., 2008: Analysis of convectively coupled Kelvin waves in the Indian Ocean MJO. J. Atmos. Sci., 65, 13421359.

  • Roundy, P. E., and W. M. Frank, 2004: A climatology of waves in the equatorial region. J. Atmos. Sci., 61, 21052132.

  • Roundy, P. E., C. J. Schreck III, and M. A. Janiga, 2009: Contributions of convectively coupled equatorial Rossby waves and Kelvin waves to the real-time multivariate MJO indices. Mon. Wea. Rev., 137, 469478.

    • Search Google Scholar
    • Export Citation
  • Schreck, C. J., III, and J. Molinari, 2011: Tropical cyclogenesis associated with Kelvin waves and the Madden–Julian oscillation. Mon. Wea. Rev., 139, 27232734.

    • Search Google Scholar
    • Export Citation
  • Simmons, A., S. Uppala, D. Dee, and S. Kobayashi, 2007: ERA Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35.

  • Straub, K. H., and G. N. Kiladis, 2002: Observations of a convectively coupled Kelvin waves in the eastern Pacific ITCZ. J. Atmos. Sci., 59, 3053.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., and G. N. Kiladis, 2003a: Extratropical forcing of convectively coupled Kelvin waves during austral winter. J. Atmos. Sci., 60, 526543.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., and G. N. Kiladis, 2003b: Interactions between the boreal summer intraseasonal oscillation and higher frequency tropical wave activity. Mon. Wea. Rev., 131, 945960.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., and G. N. Kiladis, 2003c: The observed structure of convectively coupled Kelvin waves: Comparison with simple models of coupled wave instability. J. Atmos. Sci., 60, 16551668.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., G. N. Kiladis, and P. E. Ciesielski, 2006: The role of equatorial waves in the onset of the South China Sea summer monsoon and the demise of El Niño during 1998. Dyn. Atmos. Oceans, 42, 216238.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., 1994: Large-scale cloud disturbances associated with equatorial waves. Part I: Spectral features of the cloud disturbances. J. Meteor. Soc. Japan, 72, 433448.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., and M. Murakami, 1991: The structure of super cloud clusters observed in 1–20 June 1986 and their relationship to easterly waves. J. Meteor. Soc. Japan, 69, 105125.

    • Search Google Scholar
    • Export Citation
  • Tuleya, R. E., and Y. Kurihara, 1981: A numerical study of the effects of environmental flow on tropical storm genesis. Mon. Wea. Rev., 109, 24872506.

    • Search Google Scholar
    • Export Citation
  • Tulich, S. N., and G. N. Kiladis, 2012: Squall lines and convectively coupled gravity waves in the tropics: Why do most cloud systems move westward? J. Atmos. Sci., in press.

    • Search Google Scholar
    • Export Citation
  • Ventrice, M. J., C. D. Thorncroft, and P. E. Roundy, 2011: The Madden–Julian oscillation’s influence on African easterly waves and downstream tropical cyclogenesis. Mon. Wea. Rev., 139, 27042722.

    • Search Google Scholar
    • Export Citation
  • Ventrice, M. J., C. D. Thorncroft, and M. A. Janiga, 2012: Atlantic tropical cyclogenesis: A three-way interaction between an African easterly wave, diurnally varying convection, and a convectively coupled atmospheric Kelvin wave. Mon. Wea. Rev., 140, 11081124.

    • Search Google Scholar
    • Export Citation
  • Vizy, E. K., and K. H. Cook, 2009: Tropical storm development from African easterly waves in the eastern Atlantic: A comparison of two successive waves using a regional model as part of NASA AMMA 2006. J. Atmos. Sci., 66, 33133334.

    • Search Google Scholar
    • Export Citation
  • Wang, H., and R. Fu, 2007: The influence of Amazon rainfall on the Atlantic ITCZ through convectively coupled Kelvin waves. J. Climate, 20, 11881201.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and K. M. Weickmann, 2001: Real-time monitoring and prediction of modes of coherent synoptic to intraseasonal tropical variability. Mon. Wea. Rev., 129, 26772694.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., G. N. Kiladis, and P. J. Webster, 2000: Large-scale dynamical fields associated with convectively coupled equatorial waves. J. Atmos. Sci., 57, 613640.

    • Search Google Scholar
    • Export Citation
  • Zangvil, A., 1975: Temporal and spatial behavior of large-scale disturbances in tropical cloudiness deduced from satellite brightness data. Mon. Wea. Rev., 103, 904920.

    • Search Google Scholar
    • Export Citation
  • Zawislak, J., and E. J. Zipser, 2010: Observations of seven African easterly waves in the east Atlantic during 2006. J. Atmos. Sci., 67, 2643.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., and Coauthors, 2009: The Saharan air layer and the fate of African easterly waves—NASA’s AMMA field study of tropical cyclogenesis. Bull. Amer. Meteor. Soc., 90, 11371156.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1316 453 121
PDF Downloads 510 124 14