• Betten, D., M. Biggerstaff, K. Kuhlman, C. Ziegler, and D. MacGorman, 2009: Rear-flank downdraft evolution in the 29 May 2004 Geary, Oklahoma tornadic supercell thunderstorm. Preprints, Fifth European Conf. on Severe Storms, Landshut, Germany, European Severe Storms Laboratory, Paper 31, 2 pp. [Available online at http://www.essl.org/ECSS/2009/preprints/P02-01-betten.pdf.]

  • Biagi, C., K. Cummins, E. Kehoe, and E. Krider, 2007: National Lightning Detection Network (NLDN) performance in southern Arizona, Texas, and Oklahoma in 2003–2004. J. Geophys. Res., 112, D05208, doi:10.1029/2006JD007341.

    • Search Google Scholar
    • Export Citation
  • Bruning, E. C., W. D. Rust, D. R. MacGorman, M. I. Biggerstaff, and T. J. Schuur, 2010: Formation of charge structures in a supercell. Mon. Wea. Rev., 138, 37403761.

    • Search Google Scholar
    • Export Citation
  • Byrne, G., A. Few, and M. Stewart, 1989: Electric field measurements within a severe thunderstorm anvil. J. Geophys. Res., 94, 62976307.

    • Search Google Scholar
    • Export Citation
  • Coleman, L., T. Marshall, M. Stolzenburg, T. Hamlin, P. Krehbiel, W. Rison, and R. Thomas, 2003: Effects of charge and electrostatic potential on lighting propagation. J. Geophys. Res., 108, 4298, doi:10.1029/2002JD002718.

    • Search Google Scholar
    • Export Citation
  • Crum, T., and R. Alberty, 1993: The WSR-88D and the WSR-88D operational support facility. Bull. Amer. Meteor. Soc., 74, 16691687.

  • Cummins, K., and M. Murphy, 2009: An overview of lightning locating systems: History, techniques, and data uses, with an in-depth look at the U.S. NLDN. IEEE Trans. Electromagn. Compat., 51 (3), 499518, doi:10.1109/TEMC.2009.2023450.

    • Search Google Scholar
    • Export Citation
  • Dolezalek, H., 1963: The atmospheric electric fog effect. Rev. Geophys., 1 (2), 231282.

  • Doviak, R. J., V. N. Bringi, A. V. Ryzhkov, A. Zahrai, and D. S. Zrnić, 2000: Considerations for polarimetric upgrades to operational WSR-88D radars. J. Atmos. Oceanic Technol., 17, 257278.

    • Search Google Scholar
    • Export Citation
  • Dye, J. E., and J. C. Willett, 2007: Observed enhancement of reflectivity and the electric field in long-lived Florida anvils. Mon. Wea. Rev., 135, 33623380.

    • Search Google Scholar
    • Export Citation
  • Dye, J. E., and Coauthors, 2007: Electric fields, cloud microphysics, and reflectivity in anvils of Florida thunderstorms. J. Geophys. Res., 112, D11215, doi:10.1029/2006JD007550.

    • Search Google Scholar
    • Export Citation
  • Emersic, C., and C. P. R. Saunders, 2010: Further laboratory investigations into the relative diffusional growth rate theory of thunderstorm electrification. Atmos. Res., 98, 327340, doi:10.1016/j.atmosres.2010.07.011.

    • Search Google Scholar
    • Export Citation
  • Findeisen, W., 1940: Die entstehung der 0°-isothermie und die fraktocumulus-bildung unter nimbostratus (The origin of 0°C isothermal layers and of fractocumulus beneath nimbostratus). Meteor. Z., 57, 4954.

    • Search Google Scholar
    • Export Citation
  • Hoppel, W. A., and B. B. Phillips, 1971: The electrical shielding layer around charged clouds and its role in thunderstorm electricity. J. Atmos. Sci., 28, 12581271.

    • Search Google Scholar
    • Export Citation
  • Kasemir, H., 1960: A contribution to the electrostatic theory of a lightning discharge. J. Geophys. Res., 65, 18731878.

  • Klazura, G., and D. Imy, 1993: A description of the initial set of analysis products available from the NEXRAD WSR-88D system. Bull. Amer. Meteor. Soc., 74, 12931311.

    • Search Google Scholar
    • Export Citation
  • Knight, C. A., L. Jay Miller, and W. D. Hall, 2004: Deep convection and first echoes within anvil precipitation. Mon. Wea. Rev., 132, 18771890.

    • Search Google Scholar
    • Export Citation
  • Krehbiel, P., 1986: The electrical structure of thunderstorms. The Earth’s Electrical Environment, E. Krider and R. Roble, Eds., National Academy Press, 90–113.

  • Krider, E., H. Koons, R. Walterscheid, W. Rust, and J. Willett, 1999: Natural and triggered lightning launch commit criteria (LCC). Aerospace Rep. TR-99(1413), The Aerospace Corporation, El Segundo, CA, 1 pp.

  • Kuhlman, K. M., C. L. Zielger, E. R. Mansell, D. R. MacGorman, and J. M. Straka, 2006: Numerically simulated electrification and lightning of the 29 June 2000 STEPS supercell storm. Mon. Wea. Rev., 134, 27342757.

    • Search Google Scholar
    • Export Citation
  • Kuhlman, K. M., D. MacGorman, M. Biggerstaff, and P. Krehbiel, 2009: Lightning initiation in the anvils of two supercell storms. Geophys. Res. Lett., 36, L07802, doi:10.1029/2008GL036650.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 19401961.

    • Search Google Scholar
    • Export Citation
  • Lang, T., and S. Rutledge, 2008: Kinematic, microphysical, and electrical aspects of an asymmetric bow-echo mesoscale convective system observed during STEPS 2000. J. Geophys. Res., 113, D08213, doi:10.1029/2006JD007709.

    • Search Google Scholar
    • Export Citation
  • Larson, H., and E. Stansbury, 1974: Association of lightning flashes with precipitation cores extending to height 7 km. J. Atmos. Terr. Phys., 36, 15471553.

    • Search Google Scholar
    • Export Citation
  • Lengyel, M. M., 2004: Lightning casualties and their proximity to surrounding cloud-to-ground lightning. M.S. thesis, School of Meteorology, University of Oklahoma, 68 pp.

  • Lilly, D. K., 1988: Cirrus outflow dynamics. J. Atmos. Sci., 45, 15941605.

  • MacGorman, D. R., D. W. Burgess, V. Mazur, W. D. Rust, W. L. Taylor, and B. C. Johnson, 1989: Lightning rates relative to tornadic storm evolution on 22 May 1981. J. Atmos. Sci., 46, 221251.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., J. M. Straka, and C. Ziegler, 2001: A lightning parameterization for numerical cloud models. J. Appl. Meteor., 40, 459478.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and Coauthors, 2008: TELEX The Thunderstorm Electrification and Lightning Experiment. Bull. Amer. Meteor. Soc., 89, 9971013.

    • Search Google Scholar
    • Export Citation
  • Marshall, T., W. Rust, W. Winn, and K. Gilbert, 1989: Electrical structure in two thunderstorm anvil clouds. J. Geophys. Res., 94, 21712181.

    • Search Google Scholar
    • Export Citation
  • Martner, B. E., 1995: Doppler radar observations of mammatus. Mon. Wea. Rev., 123, 31153121.

  • Mazur, V., 1989: A physical model of lighting initiation on aircraft in thunderstorms. J. Geophys. Res., 94, 33263340.

  • Mitzeva, R., C. Saunders, and B. Tsenova, 2006: Parameterisation of non-inductive charging in thunderstorm regions free of cloud droplets. Atmos. Res., 82, 102111, doi:10.1016/j.atmosres.2005.12.006.

    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., R. T. Austin, S. A. Young, and A. J. Heymsfield, 2002: LIRAD observations of tropical cirrus clouds in MCTEX. Part II: Optical properties and base cooling in dissipating storm anvil clouds. J. Atmos. Sci., 59, 31633177.

    • Search Google Scholar
    • Export Citation
  • Renka, R. J., 1984: Interpolation on the surface of a sphere. ACM Trans. Math. Software, 10 (4), 417436.

  • Rison, W., R. Thomas, P. Krehbiel, T. Hamlin, and J. Harlin, 1999: A GPS-based three dimensional lightning mapping system: Initial observations in New Mexico. Geophys. Res. Lett., 26, 35733576.

    • Search Google Scholar
    • Export Citation
  • Rust, W., D. MacGorman, and R. Arnold, 1981: Politive cloud-to-ground lightning flashes in severe storms. Geophys. Res. Lett., 8, 791794.

    • Search Google Scholar
    • Export Citation
  • Rust, W., and Coauthors, 2005: Inverted-polarity electrical structures in thunderstorms in the Severe Thunderstorm Electrification and Precipitation Study (STEPS). Atmos. Res., 76, 247271, doi:10.1016/j.atmosres.2004.11.029.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., and D. S. Zrnić, 2007: Depolarization in ice crystals and its effect on radar polarimetric measurements. J. Atmos. Oceanic Technol., 24, 12561267.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, P. L. Heinselman, S. E. Giangrade, and D. S. Zrnić, 2005: The joint polarization experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86, 809824.

    • Search Google Scholar
    • Export Citation
  • Schuur, T. J., and S. A. Rutledge, 2000: Electrification of stratiform regions in mesoscale convective systems. Part II: Two-dimensional numerical model simulations of a symmetric MCS. J. Atmos. Sci., 57, 19832006.

    • Search Google Scholar
    • Export Citation
  • Schuur, T. J., W. D. Rust, B. F. Smull, and T. C. Marshall, 1991: Electrical and kinematic structure of the stratiform precipitation region trailing an Oklahoma squall line. J. Atmos. Sci., 48, 825842.

    • Search Google Scholar
    • Export Citation
  • Serbu, G., and E. Trent, 1958: A study of the use of atmospheric electric measurements in fog forecasting. Eos, Trans. Amer. Geophys. Union, 39, 10341042.

    • Search Google Scholar
    • Export Citation
  • Shao, X. M., and P. R. Krehbiel, 1996: The spatial and temporal development of intracloud lightning. J. Geophys. Res., 101 (D21), 26 64126 668.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T. R., W. D. Rust, and T. C. Marshall, 1996: Electric fields and charges near 0°C in stratiform clouds. Mon. Wea. Rev., 124, 919938.

    • Search Google Scholar
    • Export Citation
  • Standler, R., and W. Winn, 1979: Effects of coronae on electric fields beneath thunderclouds. Quart. J. Roy. Meteor. Soc., 105, 285302.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., R. A. Maddox, and C. L. Ziegler, 1991: A sublimation-initiated mesoscale downdraft and its relation to the wind field below a precipitating anvil cloud. Mon. Wea. Rev., 119, 21242139.

    • Search Google Scholar
    • Export Citation
  • Stolzenburg, M., T. C. Marshall, W. D. Rust, and B. F. Smull, 1994: Horizontal distribution of electrical and meteorological conditions across the stratiform region of a mesoscale convective system. Mon. Wea. Rev., 122, 17771797.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., and K. Miyawaki, 2002: Reexamination of riming electrification in a wind tunnel. J. Atmos. Sci., 59, 10181025.

  • Tessendorf, S. A., K. C. Wiens, and S. A. Rutledge, 2007: Radar and lightning observations of the 3 June 2000 electrically inverted storm from STEPS. Mon. Wea. Rev., 135, 36653681.

    • Search Google Scholar
    • Export Citation
  • Thomas, R., P. Krehbiel, W. Rison, S. Hunyady, W. Winn, T. Hamlin, and J. Harlin, 2004: Accuracy of the lighting mapping array. J. Geophys. Res., 109, D14207, doi:10.1029/2004JD004549.

    • Search Google Scholar
    • Export Citation
  • Vonnegut, B., C. B. Moore, R. P. Espinola, and H. H. Blau, 1966: Electric potential gradients above thunderstorms. J. Atmos. Sci., 23, 764770.

    • Search Google Scholar
    • Export Citation
  • Wang, L., and K. Sassen, 2006: Cirrus mammatus properties derived from an extended remote sensing dataset. J. Atmos. Sci., 63, 712725.

    • Search Google Scholar
    • Export Citation
  • Wiens, K. C., S. A. Rutledge, and S. A. Tessendorf, 2005: The 29 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure. J. Atmos. Sci., 62, 41514177.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., 1985: Large-scale charge separation in thunderclouds. J. Geophys. Res., 90 (D4), 60136025.

  • Williams, E. R., 2006: Problems in lightning physics — The role of polarity asymmetry. Plasma Sources Sci. Technol., 15, S91S108, doi:10.1088/0963-0252/15/2/S12.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., E. R. Mansell, J. M. Straka, D. R. MacGorman, and D. W. Burgess, 2010: The impact of spatial variations of low-level stability on the life cycle of a simulated supercell storm. Mon. Wea. Rev., 138, 17381766.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., N. Balakrishnan, C. L. Ziegler, V. N. Bringi, K. Aydin, and T. Matejka, 1993: Polarimetric signatures in the stratiform region of a mesoscale convective system. J. Appl. Meteor., 32, 678693.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 15 15 15
PDF Downloads 9 9 9

Lightning in the Anvils of Supercell Thunderstorms

View More View Less
  • 1 School of Meteorology, University of Oklahoma, Norman, Oklahoma
  • | 2 NOAA/OAR/National Severe Storms Laboratory, and Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma
  • | 3 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
Restricted access

Abstract

This study uses data from the Oklahoma Lightning Mapping Array (OK-LMA), the National Lightning Detection Network, and the Norman, Oklahoma (KOUN), prototype Weather Surveillance Radar-1988 Doppler (WSR-88D) radar to examine the evolution and structure of lightning in the anvils of supercell storms as they relate to storm dynamics and microphysics. Several supercell storms within the domain of the OK-LMA were examined to determine whether they had lightning in the anvil region, and if so, the time and location of the initiation of the anvil flashes were determined. Every warm-season supercell storm had some flashes that were initiated in or near the stronger reflectivities of the parent storm and propagated 40–70 km downstream to penetrate well into the anvil. Some supercell storms also had flashes that were initiated within the anvil itself, 40–100 km beyond the closest 30-dBZ contour of the storm. These flashes were typically initiated in one of three locations: 1) coincident with a local reflectivity maximum, 2) between the uppermost storm charge and a screening-layer charge of opposite polarity near the cloud boundary, or 3) in a region in which the anvils from two adjoining storms intersected. In some storms, anvil flashes struck ground beneath a reflectivity maximum in which reflectivity ≥20 dBZ had extended below the 0°C isotherm, possibly leading to the formation of embedded convection. This relationship may be useful for identifying regions in which there is a heightened risk for cloud-to-ground strikes beneath anvil clouds. In one storm, however, anvil lightning struck ground even though this reflectivity signature was absent.

Corresponding author address: Stephanie Weiss, School of Meteorology, University of Oklahoma, 120 David L. Boren Blvd., Suite 5900, Norman, OK 73072. E-mail: sweiss@ou.edu

Abstract

This study uses data from the Oklahoma Lightning Mapping Array (OK-LMA), the National Lightning Detection Network, and the Norman, Oklahoma (KOUN), prototype Weather Surveillance Radar-1988 Doppler (WSR-88D) radar to examine the evolution and structure of lightning in the anvils of supercell storms as they relate to storm dynamics and microphysics. Several supercell storms within the domain of the OK-LMA were examined to determine whether they had lightning in the anvil region, and if so, the time and location of the initiation of the anvil flashes were determined. Every warm-season supercell storm had some flashes that were initiated in or near the stronger reflectivities of the parent storm and propagated 40–70 km downstream to penetrate well into the anvil. Some supercell storms also had flashes that were initiated within the anvil itself, 40–100 km beyond the closest 30-dBZ contour of the storm. These flashes were typically initiated in one of three locations: 1) coincident with a local reflectivity maximum, 2) between the uppermost storm charge and a screening-layer charge of opposite polarity near the cloud boundary, or 3) in a region in which the anvils from two adjoining storms intersected. In some storms, anvil flashes struck ground beneath a reflectivity maximum in which reflectivity ≥20 dBZ had extended below the 0°C isotherm, possibly leading to the formation of embedded convection. This relationship may be useful for identifying regions in which there is a heightened risk for cloud-to-ground strikes beneath anvil clouds. In one storm, however, anvil lightning struck ground even though this reflectivity signature was absent.

Corresponding author address: Stephanie Weiss, School of Meteorology, University of Oklahoma, 120 David L. Boren Blvd., Suite 5900, Norman, OK 73072. E-mail: sweiss@ou.edu
Save