Stratocumulus Clouds

Robert Wood University of Washington, Seattle, Washington

Search for other papers by Robert Wood in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper reviews the current knowledge of the climatological, structural, and organizational aspects of stratocumulus clouds and the physical processes controlling them. More of Earth’s surface is covered by stratocumulus clouds than by any other cloud type making them extremely important for Earth’s energy balance, primarily through their reflection of solar radiation. They are generally thin clouds, typically occupying the upper few hundred meters of the planetary boundary layer (PBL), and they preferably occur in shallow PBLs that are readily coupled by turbulent mixing to the surface moisture supply. Thus, stratocumuli favor conditions of strong lower-tropospheric stability, large-scale subsidence, and a ready supply of surface moisture; therefore, they are common over the cooler regions of subtropical and midlatitude oceans where their coverage can exceed 50% in the annual mean. Convective instability in stratocumulus clouds is driven primarily by the emission of thermal infrared radiation from near the cloud tops and the resulting turbulence circulations are enhanced by latent heating in updrafts and cooling in downdrafts. Turbulent eddies and evaporative cooling drives entrainment at the top of the stratocumulus-topped boundary layer (STBL), which is stronger than it would be in the absence of cloud, and this tends to result in a deepening of the STBL over time. Many stratocumulus clouds produce some drizzle through the collision–coalescence process, but thicker clouds drizzle more readily, which can lead to changes in the dynamics of the STBL that favor increased mesoscale variability, stratification of the STBL, and in some cases cloud breakup. Feedbacks between radiative cooling, precipitation formation, turbulence, and entrainment help to regulate stratocumulus. Although stratocumulus is arguably the most well-understood cloud type, it continues to challenge understanding. Indeed, recent field studies demonstrate that marine stratocumulus precipitate more strongly, and entrain less, than was previously thought, and display an organizational complexity much larger than previously imagined. Stratocumulus clouds break up as the STBL deepens and it becomes more difficult to maintain buoyant production of turbulence through the entire depth of the STBL.

Stratocumulus cloud properties are sensitive to the concentration of aerosol particles and therefore anthropogenic pollution. For a given cloud thickness, polluted clouds tend to produce more numerous and smaller cloud droplets, greater cloud albedo, and drizzle suppression. In addition, cloud droplet size also affects the time scale for evaporation–entrainment interactions and sedimentation rate, which together with precipitation changes can affect turbulence and entrainment. Aerosols are themselves strongly modified by physical processes in stratocumuli, and these two-way interactions may be a key driver of aerosol concentrations over the remote oceans. Aerosol–stratocumulus interactions are therefore one of the most challenging frontiers in cloud–climate research. Low-cloud feedbacks are also a leading cause of uncertainty in future climate prediction because even small changes in cloud coverage and thickness have a major impact on the radiation budget. Stratocumuli remain challenging to represent in climate models since their controlling processes occur on such small scales. A better understanding of stratocumulus dynamics, particularly entrainment processes and mesoscale variability, will be required to constrain these feedbacks.

CONTENTS

  1. Introduction...2

  2. Climatology of stratocumulus...4

    1. Annual mean...4

    2. Temporal variability...6

    3. Spatial scales of organization1...0

  3. The stratocumulus-topped boundary layer...11

    1. Vertical structure of the STBL...11

    2. Liquid water...14

    3. Entrainment interfacial layer...15

  4. Physical processes controlling stratocumulus...16

    1. Radiative driving of stratocumulus...16

    2. Turbulence...21

    3. Surface fluxes...24

    4. Entrainment...25

    5. Precipitation...26

  5. Microphysics...27

    1. Cloud droplet concentration and controlling factors...27

    2. Microphysics of precipitation formation...29

  6. Interactions between physical processes...32

    1. Maintenance and regulating feedbacks...32

    2. Microphysical–macrophysical interactions...34

    3. Interactions between the STBL and large-scale meteorology...35

    4. Formation...36

    5. Dissipation and transition to other cloud types...36

  7. Summary...40

Corresponding author address: Robert Wood, Department of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195. E-mail: robwood@atmos.washington.edu

Abstract

This paper reviews the current knowledge of the climatological, structural, and organizational aspects of stratocumulus clouds and the physical processes controlling them. More of Earth’s surface is covered by stratocumulus clouds than by any other cloud type making them extremely important for Earth’s energy balance, primarily through their reflection of solar radiation. They are generally thin clouds, typically occupying the upper few hundred meters of the planetary boundary layer (PBL), and they preferably occur in shallow PBLs that are readily coupled by turbulent mixing to the surface moisture supply. Thus, stratocumuli favor conditions of strong lower-tropospheric stability, large-scale subsidence, and a ready supply of surface moisture; therefore, they are common over the cooler regions of subtropical and midlatitude oceans where their coverage can exceed 50% in the annual mean. Convective instability in stratocumulus clouds is driven primarily by the emission of thermal infrared radiation from near the cloud tops and the resulting turbulence circulations are enhanced by latent heating in updrafts and cooling in downdrafts. Turbulent eddies and evaporative cooling drives entrainment at the top of the stratocumulus-topped boundary layer (STBL), which is stronger than it would be in the absence of cloud, and this tends to result in a deepening of the STBL over time. Many stratocumulus clouds produce some drizzle through the collision–coalescence process, but thicker clouds drizzle more readily, which can lead to changes in the dynamics of the STBL that favor increased mesoscale variability, stratification of the STBL, and in some cases cloud breakup. Feedbacks between radiative cooling, precipitation formation, turbulence, and entrainment help to regulate stratocumulus. Although stratocumulus is arguably the most well-understood cloud type, it continues to challenge understanding. Indeed, recent field studies demonstrate that marine stratocumulus precipitate more strongly, and entrain less, than was previously thought, and display an organizational complexity much larger than previously imagined. Stratocumulus clouds break up as the STBL deepens and it becomes more difficult to maintain buoyant production of turbulence through the entire depth of the STBL.

Stratocumulus cloud properties are sensitive to the concentration of aerosol particles and therefore anthropogenic pollution. For a given cloud thickness, polluted clouds tend to produce more numerous and smaller cloud droplets, greater cloud albedo, and drizzle suppression. In addition, cloud droplet size also affects the time scale for evaporation–entrainment interactions and sedimentation rate, which together with precipitation changes can affect turbulence and entrainment. Aerosols are themselves strongly modified by physical processes in stratocumuli, and these two-way interactions may be a key driver of aerosol concentrations over the remote oceans. Aerosol–stratocumulus interactions are therefore one of the most challenging frontiers in cloud–climate research. Low-cloud feedbacks are also a leading cause of uncertainty in future climate prediction because even small changes in cloud coverage and thickness have a major impact on the radiation budget. Stratocumuli remain challenging to represent in climate models since their controlling processes occur on such small scales. A better understanding of stratocumulus dynamics, particularly entrainment processes and mesoscale variability, will be required to constrain these feedbacks.

CONTENTS

  1. Introduction...2

  2. Climatology of stratocumulus...4

    1. Annual mean...4

    2. Temporal variability...6

    3. Spatial scales of organization1...0

  3. The stratocumulus-topped boundary layer...11

    1. Vertical structure of the STBL...11

    2. Liquid water...14

    3. Entrainment interfacial layer...15

  4. Physical processes controlling stratocumulus...16

    1. Radiative driving of stratocumulus...16

    2. Turbulence...21

    3. Surface fluxes...24

    4. Entrainment...25

    5. Precipitation...26

  5. Microphysics...27

    1. Cloud droplet concentration and controlling factors...27

    2. Microphysics of precipitation formation...29

  6. Interactions between physical processes...32

    1. Maintenance and regulating feedbacks...32

    2. Microphysical–macrophysical interactions...34

    3. Interactions between the STBL and large-scale meteorology...35

    4. Formation...36

    5. Dissipation and transition to other cloud types...36

  7. Summary...40

Corresponding author address: Robert Wood, Department of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195. E-mail: robwood@atmos.washington.edu
Save
  • Abdul-Razzak, H., and S. J. Ghan, 2000: A parameterization of aerosol activation 2. Multiple aerosol types. J. Geophys. Res., 105 (D5), 68376844.

    • Search Google Scholar
    • Export Citation
  • Abdul-Razzak, H., S. J. Ghan, and C. Rivera-Carpio, 1998: A parameterization of aerosol activation. 1. Single aerosol type. J. Geophys. Res., 103 (D6), 61236131.

    • Search Google Scholar
    • Export Citation
  • Ackerman, A. S., O. B. Toon, and P. V. Hobbs, 1993: Dissipation of marine stratiform clouds and collapse of the marine boundary-layer due to the depletion of cloud condensation nuclei by clouds. Science, 262, 226229.

    • Search Google Scholar
    • Export Citation
  • Ackerman, A. S., O. B. Toon, and P. V. Hobbs, 1995: Numerical modeling of ship tracks produced by injections of cloud condensation nuclei into marine stratiform clouds. J. Geophys. Res., 100 (D4), 71217133.

    • Search Google Scholar
    • Export Citation
  • Ackerman, A. S., O. B. Toon, D. E. Stevens, A. J. Heymsfield, V. Ramanathan, and E. J. Welton, 2000: Reduction of tropical cloudiness by soot. Science, 288, 10421047.

    • Search Google Scholar
    • Export Citation
  • Ackerman, A. S., M. P. Kirkpatrick, D. E. Stevens, and O. B. Toon, 2004: The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature, 432, 10141017.

    • Search Google Scholar
    • Export Citation
  • Ackerman, A. S., and Coauthors, 2009: Large-eddy simulations of a drizzling, stratocumulus-topped marine boundary layer. Mon. Wea. Rev., 137, 10831110.

    • Search Google Scholar
    • Export Citation
  • Ackerman, T., and M. B. Baker, 1977: Shortwave radiative effects of unactivated aerosol-particles in clouds. J. Appl. Meteor., 16, 6369.

    • Search Google Scholar
    • Export Citation
  • Agee, E. M., 1987: Meso-scale cellular convection over the oceans. Dyn. Atmos. Oceans, 10, 317341.

  • Agee, E. M., T. S. Chen, and K. E. Dowell, 1973: A review of mesoscale cellular convection. Bull. Amer. Meteor. Soc., 54, 10041012.

  • Albrecht, B. A., C. W. Fairall, D. W. Thomson, A. B. White, J. B. Snider, and W. H. Schubert, 1990: Surface-based remote-sensing of the observed and the adiabatic liquid water content of stratocumulus clouds. Geophys. Res. Lett., 17, 8992.

    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., C. S. Bretherton, D. Johnson, W. H. Schubert, and A. S. Frisch, 1995a: The Atlantic Stratocumulus Transition Experiment—ASTEX. Bull. Amer. Meteor. Soc., 76, 889904.

    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., M. P. Jensen, and W. J. Syrett, 1995b: Marine boundary layer structure and fractional cloudiness. J. Geophys. Res., 100 (D7), 14 20914 222.

    • Search Google Scholar
    • Export Citation
  • Arnason, G., and R. S. Greenfield, 1972: Micro- and macro-structures of numerically simulated convective clouds. J. Atmos. Sci., 29, 342367.

    • Search Google Scholar
    • Export Citation
  • Atkinson, B. W., and J. W. Zhang, 1996: Mesoscale shallow convection in the atmosphere. Rev. Geophys., 34, 403431.

  • Austin, P., Y. Wang, R. Pincus, and V. Kujala, 1995: Precipitation in stratocumulus clouds: Observations and modelling results. J. Atmos. Sci., 52, 23292352.

    • Search Google Scholar
    • Export Citation
  • Baker, M. B., 1993: Variability in concentrations of cloud condensation nuclei in the marine cloud-topped boundary layer. Tellus, 45B, 458472.

    • Search Google Scholar
    • Export Citation
  • Barker, H. W., J. J. Morcrette, and G. D. Alexander, 1998: Broadband solar fluxes and heating rates for atmospheres with 3D broken clouds. Quart. J. Roy. Meteor. Soc., 124, 12451271.

    • Search Google Scholar
    • Export Citation
  • Beesley, J. A., and R. E. Moritz, 1999: Toward an explanation of the annual cycle of cloudiness over the Arctic Ocean. J. Climate, 12, 395415.

    • Search Google Scholar
    • Export Citation
  • Beheng, K. D., 1994: A parameterization of warm cloud microphysical conversion processes. Atmos. Res., 33, 193206.

  • Beheng, K. D., and G. Doms, 1986: A general formulation of collection rates of cloud and raindrops using the kinetic equation and comparison with parameterizations. Beitr. Phys. Atmos., 59, 6684.

    • Search Google Scholar
    • Export Citation
  • Bennartz, R., 2007: Global assessment of marine boundary layer cloud droplet number concentration from satellite. J. Geophys. Res., 112, D02201, doi:10.1029/2006JD007547.

    • Search Google Scholar
    • Export Citation
  • Bergman, J. W., and M. L. Salby, 1996: Diurnal variations of cloud cover and their relationship to climatological conditions. J. Climate, 9, 28022820.

    • Search Google Scholar
    • Export Citation
  • Berner, A., C. S. Bretherton, and R. Wood, 2011: Large-eddy simulation of mesoscale dynamics and entrainment around a pocket of open cells observed in VOCALS RF06. Atmos. Chem. Phys., 11, 13 31713 353.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and W. Ridgway, 1989: Climatic equilibrium of the atmospheric convective boundary layer over a tropical ocean. J. Atmos. Sci., 46, 26212641.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., C. S. Bretherton, and E. Klinker, 1995: Relation between mean boundary-layer structure and cloudiness at the R/V Valdivia during ASTEX. J. Atmos. Sci., 52, 27522762.

    • Search Google Scholar
    • Export Citation
  • Boers, R., and P. B. Krummel, 1998: Microphysical properties of boundary layer clouds over the Southern Ocean during ACE 1. J. Geophys. Res., 103 (D13), 16 65116 663.

    • Search Google Scholar
    • Export Citation
  • Boers, R., G. P. Ayers, and J. L. Gras, 1994: Coherence between seasonal-variation in satellite-derived cloud optical depth and boundary-layer CCN concentrations at a midlatitude southern-hemisphere station. Tellus, 46B, 123131.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and J.-L. Dufresne, 2005: Marine boundary layer clouds at the heart of cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, doi:10.1029/2005GL023851.

    • Search Google Scholar
    • Export Citation
  • Brenguier, J.-L., and R. Wood, 2009: Observational strategies from the micro to meso scale. Clouds in the Perturbed Climate System: Their Relationship to Energy Balance, Atmospheric Dynamics, and Precipitation, J. Heintzenberg and R. Charlson, Eds., MIT Press, 487–510.

  • Brenguier, J. L., H. Pawlowska, L. Schuller, R. Preusker, J. Fischer, and Y. Fouquart, 2000a: Radiative properties of boundary layer clouds: Droplet effective radius versus number concentration. J. Atmos. Sci., 57, 803821.

    • Search Google Scholar
    • Export Citation
  • Brenguier, J. L., and Coauthors, 2000b: An overview of the ACE-2 CLOUDYCOLUMN closure experiment. Tellus, 52B, 815827.

  • Bretherton, C. S., 1997: Convection in stratocumulus-capped atmospheric boundary layers. The Physics and Parameterization of Moist Atmospheric Convection, R. K. Smith, Ed., Kluwer Publishers, 127–142.

  • Bretherton, C. S., and R. Pincus, 1995: Cloudiness and marine boundary layer dynamics in the ASTEX Lagrangian experiments. Part I: Synoptic setting and vertical structure. J. Atmos. Sci., 52, 27072723.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and M. C. Wyant, 1997: Moisture transport, lower-tropospheric stability, and decoupling of cloud-topped boundary layers. J. Atmos. Sci., 54, 148167.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and D. L. Hartmann, 2009: Large-scale controls on cloudiness. Clouds in the Perturbed Climate System: Their Relationship to Energy Balance, Atmospheric Dynamics, and Precipitation, J. Heintzenberg and R. Charlson, Eds., MIT Press, 217–234.

  • Bretherton, C. S., P. Austin, and S. T. Siems, 1995: Cloudiness and marine boundary layer dynamics in the ASTEX Lagrangian experiments. Part II: Cloudiness, drizzle, surface fluxes and entrainment. J. Atmos. Sci., 52, 27242735.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., T. Uttal, C. W. Fairall, S. E. Yuter, R. A. Weller, D. Baumgardner, K. Comstock, and R. Wood, 2004: The EPIC 2001 stratocumulus study. Bull. Amer. Meteor. Soc., 85, 967977.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., P. Blossey, and J. Uchida, 2007: Cloud droplet sedimentation, entrainment efficiency, and subtropical stratocumulus albedo. Geophys. Res. Lett., 34, L03813, doi:10.1029/2006GL027648.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., R. George, R. Wood, G. Allen, D. Leon, and B. Albrecht, 2010a: Southeast Pacific stratocumulus clouds, precipitation and boundary layer structure sampled along 20S during VOCALS-REx. Atmos. Chem. Phys., 10, 15 92115 962.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., J. Uchida, and P. Blossey, 2010b: Slow manifolds and multiple equilibria in stratocumulus-capped boundary layers. J. Adv. Model. Earth Syst., 2, doi:10.3894/JAMES.2010.2.14.

    • Search Google Scholar
    • Export Citation
  • Brost, R. A., D. H. Lenschow, and J. C. Wyngaard, 1982a: Marine stratocumulus layers. Part I: Mean conditions. J. Atmos. Sci., 39, 800817.

    • Search Google Scholar
    • Export Citation
  • Brost, R. A., J. C. Wyngaard, and D. H. Lenschow, 1982b: Marine stratocumulus layers. Part II: Turbulence budgets. J. Atmos. Sci., 39, 818836.

    • Search Google Scholar
    • Export Citation
  • Cahalan, R. F., and J. B. Snider, 1989: Marine stratocumulus structure. Remote Sens. Environ., 28, 95107.

  • Cahalan, R. F., W. Ridgway, W. J. Wiscombe, T. L. Bell, and J. B. Snider, 1994: The albedo of fractal stratocumulus clouds. J. Atmos. Sci., 51, 24342455.

    • Search Google Scholar
    • Export Citation
  • Caldwell, P., and C. S. Bretherton, 2009: Response of a subtropical stratocumulus-capped mixed layer to climate and aerosol changes. J. Climate, 22, 2038.

    • Search Google Scholar
    • Export Citation
  • Caldwell, P., R. Wood, and C. S. Bretherton, 2005: Mixed-layer budget analysis of the diurnal cycle of entrainment in southeast Pacific stratocumulus. J. Atmos. Sci., 62, 37753791.

    • Search Google Scholar
    • Export Citation
  • Cantrell, W., and A. Heymsfield, 2005: Production of ice in tropospheric clouds: A review. Bull. Amer. Meteor. Soc., 86, 795807.

  • Caughey, S. J., and M. Kitchen, 1984: Simultaneous measurements of the turbulent and microphysical structure of nocturnal stratocumulus cloud. Quart. J. Roy. Meteor. Soc., 110, 1334.

    • Search Google Scholar
    • Export Citation
  • Caughey, S. J., B. A. Crease, and W. T. Roach, 1982: A field-study of nocturnal stratocumulus. 2. Turbulence structure and entrainment. Quart. J. Roy. Meteor. Soc., 108, 125144.

    • Search Google Scholar
    • Export Citation
  • Chen, T., W. B. Rossow, and Y. C. Zhang, 2000: Radiative effects of cloud-type variations. J. Climate, 13, 264286.

  • Chlond, A., 1992: Three-dimensional simulation of cloud street development during a cold air outbreak. Bound.-Layer Meteor., 58, 161200.

    • Search Google Scholar
    • Export Citation
  • Christensen, M. W., and G. L. Stephens, 2011: Microphysical and macrophysical responses of marine stratocumulus polluted by underlying ships: Evidence of cloud deepening. J. Geophys. Res., 116, D03201, doi:10.1029/2010JD014638.

    • Search Google Scholar
    • Export Citation
  • Chylek, P., P. Damiano, and E. P. Shettle, 1992: Infrared emittance of water clouds. J. Atmos. Sci., 49, 14591472.

  • Chylek, P., G. B. Lesins, G. Videen, J. G. D. Wong, R. G. Pinnick, D. Ngo, and J. D. Klett, 1996: Black carbon and absorption of solar radiation by clouds. J. Geophys. Res., 101 (D18), 23 36523 371.

    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., W. H. Schubert, and R. H. Johnson, 1999: Large-scale heat and moisture budgets over the ASTEX region. J. Atmos. Sci., 56, 32413261.

    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., W. H. Schubert, and R. H. Johnson, 2001: Diurnal variability of the marine boundary layer during ASTEX. J. Atmos. Sci., 58, 23552376.

    • Search Google Scholar
    • Export Citation
  • Coakley, J. A. J., and C. D. Walsh, 2002: Limits to the aerosol indirect radiative effect derived from observations of ship tracks. J. Atmos. Sci., 59, 668680.

    • Search Google Scholar
    • Export Citation
  • Cohard, J. M., and J. P. Pinty, 2000: A comprehensive two-moment warm microphysical bulk scheme. I: Description and tests. Quart. J. Roy. Meteor. Soc., 126, 18151842.

    • Search Google Scholar
    • Export Citation
  • Cohard, J. M., J. P. Pinty, and C. Bedos, 1998: Extending Twomey’s analytical estimate of nucleated cloud droplet concentrations from CCN spectra. J. Atmos. Sci., 55, 33483357.

    • Search Google Scholar
    • Export Citation
  • Comstock, K., R. Wood, S. Yuter, and C. S. Bretherton, 2004: Radar observations of precipitation in and below stratocumulus clouds. Quart. J. Roy. Meteor. Soc., 130, 28912918.

    • Search Google Scholar
    • Export Citation
  • Comstock, K., C. S. Bretherton, and S. Yuter, 2005: Mesoscale variability and drizzle in southeast Pacific stratocumulus. J. Atmos. Sci., 62, 37923807.

    • Search Google Scholar
    • Export Citation
  • Comstock, K., S. E. Yuter, R. Wood, and C. S. Bretherton, 2007: The three dimensional structure and kinematics of drizzling stratocumulus. Mon. Wea. Rev., 135, 37673784.

    • Search Google Scholar
    • Export Citation
  • Conant, W. C., and Coauthors, 2004: Aerosol–cloud drop concentration closure in warm cumulus. J. Geophys. Res., 109, D13204, doi:10.1029/2003JD004324.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., W. B. Rossow, D. Randall, and J. L. Schramm, 1996: Overview of Arctic cloud and radiation characteristics. J. Climate, 9, 17311764.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2001: Global precipitation and thunderstorm frequencies. Part II: Diurnal variations. J. Climate, 14, 11121128.

  • Dai, A., T. R. Karl, B. M. Sun, and K. E. Trenberth, 2006: Recent trends in cloudiness over the United States—A tale of monitoring inadequacies. Bull. Amer. Meteor. Soc., 87, 597606.

    • Search Google Scholar
    • Export Citation
  • Danielson, R. E., D. R. Moore, and H. Van de Hulst, 1969: Transfer of visible radiation through clouds. J. Atmos. Sci., 26, 10781087.

    • Search Google Scholar
    • Export Citation
  • Davis, A., A. Marshak, W. Wiscombe, and R. Cahahlan, 1996: Scale invariance of liquid water distributions in marine stratocumulus. Part I: Spectral properties and strationarity issues. J. Atmos. Sci., 53, 15381558.

    • Search Google Scholar
    • Export Citation
  • Davis, A., A. Marshak, H. Gerber, and W. J. Wiscombe, 1999: Horizontal structure of marine boundary layer clouds from centimeter to kilometer scales. J. Geophys. Res., 104 (D6), 61236144.

    • Search Google Scholar
    • Export Citation
  • de Roode, S. R., and P. G. Duynkerke, 1996: Dynamics of cumulus rising into stratocumulus as observed during the first ‘Lagrangian’ experiment of ASTEX. Quart. J. Roy. Meteor. Soc., 122, 15971623.

    • Search Google Scholar
    • Export Citation
  • de Roode, S. R., and P. G. Duynkerke, 1997: Observed Lagrangian transition of stratocumulus into cumulus during ASTEX: Mean state and turbulence structure. J. Atmos. Sci., 54, 21572173.

    • Search Google Scholar
    • Export Citation
  • de Roode, S. R., and Q. Wang, 2007: Do stratocumulus clouds detrain? FIRE I data revisited. Bound.-Layer Meteor., 122, 479491.

  • de Roode, S. R., P. G. Duynkerke, and H. J. Jonker, 2004: Large eddy simulation: How large is large enough? J. Atmos. Sci., 61, 403421.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1976: Entrainment rate of stratocumulus topped mixed layer. Quart. J. Roy. Meteor. Soc., 102, 563582.

  • Deardorff, J. W., 1980a: Cloud top entrainment instability. J. Atmos. Sci., 37, 561563.

  • Deardorff, J. W., 1980b: Stratocumulus-capped mixed layers derived from a 3-dimensional model. Bound.-Layer Meteor., 18, 495527.

  • Deardorff, J. W., 1981: On the distribution of mean radiative cooling at the top of a stratocumulus-capped mixed layer. Quart. J. Roy. Meteor. Soc., 107, 191202.

    • Search Google Scholar
    • Export Citation
  • Driedonks, A. G. M., 1982: Models and observations of the growth of the atmospheric boundary-layer. Bound.-Layer Meteor., 23, 283306.

    • Search Google Scholar
    • Export Citation
  • Driedonks, A. G. M., and P. G. Duynkerke, 1989: Current problems in the stratocumulus-topped atmospheric boundary-layer–(survey paper). Bound.-Layer Meteor., 46, 275303.

    • Search Google Scholar
    • Export Citation
  • Dusek, U., and Coauthors, 2006: Size matters more than chemistry for cloud-nucleating ability of aerosol particles. Science, 312, 13751378.

    • Search Google Scholar
    • Export Citation
  • Duynkerke, P. G., 1993: The stability of cloud top with regard to entrainment: Amendment of the theory of cloud-top entrainment instability. J. Atmos. Sci., 50, 495502.

    • Search Google Scholar
    • Export Citation
  • Duynkerke, P. G., and P. Hignett, 1993: Simulation of a diurnal variation in a stratocumulus-capped marine boundary layer during FIRE. Mon. Wea. Rev., 121, 32913300.

    • Search Google Scholar
    • Export Citation
  • Duynkerke, P. G., and J. Teixeira, 2001: Comparison of the ECMWF reanalysis with FIRE I observations: Diurnal variation of marine stratocumulus. J. Climate, 14, 14661478.

    • Search Google Scholar
    • Export Citation
  • Duynkerke, P. G., H. Q. Zhang, and P. J. Jonker, 1995: Microphysical and turbulent structure of nocturnal stratocumulus as observed during ASTEX. J. Atmos. Sci., 52, 27632777.

    • Search Google Scholar
    • Export Citation
  • Eastman, R., S. G. Warren, and C. J. Hahn, 2011: Variations in cloud cover and cloud types over the ocean from surface observations, 1954–2008. J. Climate, 24, 59145934.

    • Search Google Scholar
    • Export Citation
  • Erlick, C., and D. Schlesinger, 2008: Another look at the influence of absorbing aerosols in drops on cloud absorption: Large aerosols. J. Atmos. Sci., 65, 661669.

    • Search Google Scholar
    • Export Citation
  • Evan, A. T., A. K. Heidinger, and D. J. Vimont, 2007: Arguments against a physical long-term trend in global ISCCP cloud amounts. Geophys. Res. Lett., 34, L04701, doi:10.1029/2006GL028083.

    • Search Google Scholar
    • Export Citation
  • Facchini, M. C., M. Mircea, S. Fuzzi, and R. J. Charlson, 1999: Cloud albedo enhancement by surface-active organic solutes in growing droplets. Nature, 401, 257259.

    • Search Google Scholar
    • Export Citation
  • Faloona, I., and Coauthors, 2005: Observations of entrainment in eastern Pacific marine stratocumulus using three conserved scalars. J. Atmos. Sci., 62, 32683285.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., 2003: Modeling of the first indirect effect: Analysis of measurement requirements. Geophys. Res. Lett., 30, 1997, doi:10.1029/2003GL017967.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., and P. Y. Chuang, 2002: Analysis of the influence of film-forming compounds on droplet growth: Implications for cloud microphysical processes and climate. J. Atmos. Sci., 59, 20062018.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., and H. Siebert, 2009: Cloud-aerosol interactions from the micro to the cloud scale. Clouds in the Perturbed Climate System: Their Relationship to Energy Balance, Atmospheric Dynamics, and Precipitation, J. Heintzenberg and R. Charlson, Eds., MIT Press, 319–338.

  • Feingold, G., W. Cotton, B. Stevens, and A. S. Frisch, 1996: The relationship between drop in-cloud residence time and drizzle production in numerically simulated stratocumulus clouds. J. Atmos. Sci., 53, 11081122.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., I. Koren, H. Wang, H. Xue, and W. Brewer, 2010: Precipitation-generated oscillations in open cellular cloud fields. Nature, 466, 849852.

    • Search Google Scholar
    • Export Citation
  • Ferek, R. J., and Coauthors, 2000: Drizzle suppression in ship tracks. J. Atmos. Sci., 57, 27072728.

  • Field, P. R., and R. Wood, 2007: Precipitation and cloud structure in midlatitude cyclones. J. Climate, 20, 233254.

  • Fountoukis, C., and Coauthors, 2007: Aerosol-cloud drop concentration closure for clouds sampled during the International Consortium for Atmospheric Research on Transport and Transformation 2004 campaign. J. Geophys. Res., 112, D10S30, doi:10.1029/2006JD007272.

    • Search Google Scholar
    • Export Citation
  • Fridlind, A. M., A. S. Ackerman, G. McFarquhar, G. Zhang, M. R. Poellot, P. J. DeMott, A. J. Prenni, and A. J. Heymsfield, 2007: Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment: 2. Model results. J. Geophys. Res., 112, D24202, doi:10.1029/2007JD008646.

    • Search Google Scholar
    • Export Citation
  • Garay, M., R. Davies, C. Averill, and J. Westphal, 2004: Actinoform clouds: Overlooked examples of cloud self-organization at the mesoscale. Bull. Amer. Meteor. Soc., 85, 15851594.

    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1992: The Atmospheric Boundary Layer. 1st ed. Cambridge University Press, 316 pp.

  • Garratt, J. R., and R. A. Brost, 1981: Radiative cooling effects within and above the nocturnal boundary-layer. J. Atmos. Sci., 38, 27302746.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., and J. Rutllant, 2003: Coastal lows along the subtropical west coast of South America: Numerical simulation of a typical case. Mon. Wea. Rev., 131, 891908.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., and R. Muñoz, 2004: The diurnal cycle in circulation and cloudiness over the subtropical southeast Pacific: A modeling study. J. Climate, 17, 16991710.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., J. Rutllant, J. Quintana, J. Carrasco, and P. Minnis, 2001: CIMAR-5: A snapshot of the lower troposphere over the subtropical southeast Pacific. Bull. Amer. Meteor. Soc., 82, 21932207.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., J. Rutllant, and H. Fuenzalida, 2002: Coastal lows along the subtropical west coast of South America: Mean structure and evolution. Mon. Wea. Rev., 130, 7588.

    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., L. F. Radke, and P. V. Hobbs, 2002: Aerosol effects on cloud emissivity and surface longwave heating in the Arctic. J. Atmos. Sci., 59, 769778.

    • Search Google Scholar
    • Export Citation
  • Geoffroy, O., J. L. Brenguier, and I. Sandu, 2008: Relationship between drizzle rate, liquid water path and droplet concentration at the scale of a stratocumulus cloud system. Atmos. Chem. Phys., 8, 46414654.

    • Search Google Scholar
    • Export Citation
  • George, R. C., and R. Wood, 2010: Subseasonal variability of low cloud properties over the southeast Pacific Ocean. Atmos. Chem. Phys., 10, 40474063.

    • Search Google Scholar
    • Export Citation
  • Gerber, H., 1996: Microphysics of marine stratocumulus with two drizzle modes. J. Atmos. Sci., 53, 16491662.

  • Gerber, H., G. Frick, S. P. Malinowski, J. L. Brenguier, and F. Burnet, 2005: Holes and entrainment in stratocumulus. J. Atmos. Sci., 62, 443459.

    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., G. Guzman, and H. Abdul-Razzak, 1998: Competition between sea salt and sulfate particles as cloud condensation nuclei. J. Atmos. Sci., 55, 33403347.

    • Search Google Scholar
    • Export Citation
  • Glantz, P., K. J. Noone, and S. R. Osborne, 2003: Scavenging efficiencies of aerosol particles in marine stratocumulus and cumulus clouds. Quart. J. Roy. Meteor. Soc., 129, 13291350.

    • Search Google Scholar
    • Export Citation
  • Greenwald, T. J., G. L. Stephens, S. A. Christopher, and T. H. VonderHaar, 1995: Observations of the global characteristics and regional radiative effects of marine cloud liquid water. J. Climate, 8, 29282946.

    • Search Google Scholar
    • Export Citation
  • Gultepe, I., and G. A. Isaac, 2004: Aircraft observations of cloud droplet number concentration: Implications for climate studies. Quart. J. Roy. Meteor. Soc., 130, 23772390.

    • Search Google Scholar
    • Export Citation
  • Hahn, C. J., and S. G. Warren, 2007: A gridded climatology of clouds over land (1971–96) and ocean (1954–97) from surface observations worldwide. Numeric Data Package NDP-026E ORNL/CDIAC-153, CDIAC, Department of Energy, Oak Ridge, TN.

  • Hahn, C. J., W. B. Rossow, and S. G. Warren, 2001: ISCCP cloud properties associated with standard cloud types identified in individual surface observations. J. Climate, 14, 1128.

    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., 2003: Developing wave packets in the North Pacific storm track. Mon. Wea. Rev., 131, 342355.

  • Hall, W. D., 1980: A detailed microphysical model within a two-dimensional dynamic framework: Model description and preliminary results. J. Atmos. Sci., 37, 24862507.

    • Search Google Scholar
    • Export Citation
  • Haman, K. E., S. P. Malinowski, M. J. Kurowski, H. Gerber, and J. L. Brenguier, 2007: Small scale mixing processes at the top of a marine stratocumulus—A case study. Quart. J. Roy. Meteor. Soc., 133, 213226.

    • Search Google Scholar
    • Export Citation
  • Hansen, J. E., and L. D. Travis, 1974: Light scattering in planetary atmospheres. Space Sci. Rev., 16, 527610.

  • Hanson, H. P., 1991: Marine stratocumulus climatologies. Int. J. Climatol., 11, 147164.

  • Hartmann, D. L., 1994: Global Physical Climatology. Academic Press, 408 pp.

  • Hartmann, D. L., and D. Short, 1980: On the use of earth radiation budget statistics for studies of clouds and climate. J. Atmos. Sci., 37, 12331250.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., M. E. Ockert-Bell, and M. L. Michelsen, 1992: The effect of cloud type on earth’s energy balance—Global analysis. J. Climate, 5, 12811304.

    • Search Google Scholar
    • Export Citation
  • Haywood, J. M., and K. P. Shine, 1997: Multi-spectral calculations of the direct radiative forcing of tropospheric sulphate and soot aerosols using a column model. Quart. J. Roy. Meteor. Soc., 123, 19071930.

    • Search Google Scholar
    • Export Citation
  • Henrion, X., H. Sauvageot, and D. Ramond, 1978: Finestructure of precipitation and temperature in a stratocumulus cloud. J. Atmos. Sci., 35, 23152324.

    • Search Google Scholar
    • Export Citation
  • Hermann, G., and R. Goody, 1976: Formation and persistence of summertime arctic stratus clouds. J. Atmos. Sci., 33, 15371553.

  • Hignett, P., 1991: Observations of diurnal variation in a cloud-capped marine boundary layer. J. Atmos. Sci., 48, 14741482.

  • Hobbs, P. V., and A. L. Rangno, 1998: Microstructures of low and middle-level clouds over the Beaufort Sea. Quart. J. Roy. Meteor. Soc., 124, 20352071.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., A. L. M. Grant, A. J. Illingworth, G. N. Pearson, and E. J. O’Connor, 2009: Vertical velocity variance and skewness in clear and cloud-topped boundary layers as revealed by Doppler lidar. Quart. J. Roy. Meteor. Soc., 135, 635643.

    • Search Google Scholar
    • Export Citation
  • Howell, W. E., 1949: The growth of cloud drops in uniformly cooled air. J. Meteor., 6, 134149.

  • Hu, Y. X., and K. Stamnes, 1993: An accurate parameterization of the radiative properties of water clouds suitable for use in climate models. J. Climate, 6, 728742.

    • Search Google Scholar
    • Export Citation
  • Hudson, J. G., 2007: Variability of the relationship between particle size and cloud-nucleating ability. Geophys. Res. Lett., 34, L08801, doi:10.1029/2006GL028850.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and G. A. Norman, 1988: The supercooled warm rain process and the specification of freezing precipitation. Mon. Wea. Rev., 116, 21722182.

    • Search Google Scholar
    • Export Citation
  • Isaksen, I. S. A., and Coauthors, 2009: Atmospheric composition change: Climate–chemistry interactions. Atmos. Environ., 43, 51385192.

    • Search Google Scholar
    • Export Citation
  • Jensen, J. B., S. Lee, P. B. Krummel, J. Katzfey, and D. Gogoasa, 2000: Precipitation in marine cumulus and stratocumulus. Part I: Thermodynamic and dynamic observations of closed cell circulations and cumulus bands. Atmos. Res., 54, 117155.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., G. Feingold, and W. R. Cotton, 2002: Simulations of aerosol-cloud-dynamical feedbacks resulting from entrainment of aerosol into the marine boundary layer during the Atlantic Stratocumulus Transition Experiment. J. Geophys. Res., 107, 4813, doi:10.1029/2001JD001502.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., G. Feingold, and A. Sorooshian, 2010: Effect of aerosol on the susceptibility and efficiency of precipitation in warm trade cumulus clouds. J. Atmos. Sci., 67, 35253540.

    • Search Google Scholar
    • Export Citation
  • Jonas, P. R., 1996: Turbulence and cloud microphysics. Atmos. Res., 40, 283306.

  • Jones, C., C. Bretherton, and D. Leon, 2011: Coupled vs. decoupled boundary layers in VOCALS-REx. Atmos. Chem. Phys., 11, 71437153.

  • Jonker, H., P. Duynkerke, and J. Cuijpers, 1999: Mesoscale fluctuations in scalars generated by boundary layer convection. J. Atmos. Sci., 56, 801808.

    • Search Google Scholar
    • Export Citation
  • Junge, C., and E. McLaren, 1971: Relationship of cloud nuclei spectra to aerosol size distribution and composition. J. Atmos. Sci., 28, 382390.

    • Search Google Scholar
    • Export Citation
  • Kajikawa, M., K. Kikuchi, Y. Asuma, Y. Inoue, and N. Sato, 2000: Supercooled drizzle formed by condensation-coalescence in the mid-winter season of the Canadian Arctic. Atmos. Res., 52, 293301.

    • Search Google Scholar
    • Export Citation
  • Kawa, S. R., and R. Pearson Jr., 1989: An observational study of stratocumulus entrainment and thermodynamics. J. Atmos. Sci., 46, 26492661.

    • Search Google Scholar
    • Export Citation
  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulation. Meteor. Monogr., No. 10, Amer. Meteor. Soc., 84 pp.

  • Khain, A., M. Ovchinnikov, M. Pinsky, A. Pokrovsky, and H. Krugliak, 2000: Notes on the state-of-the-art numerical modeling of cloud microphysics. Atmos. Res., 55, 159224.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and Y. Kogan, 2000: A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. J. Atmos. Sci., 57, 229243.

    • Search Google Scholar
    • Export Citation
  • Kim, B. G., S. A. Klein, and J. R. Norris, 2005: Continental liquid water cloud variability and its parameterization using Atmospheric Radiation Measurement data. J. Geophys. Res., 110, D15S08, doi:10.1029/2004JD005122.

    • Search Google Scholar
    • Export Citation
  • King, M. D., and Harshvardhan, 1986: Comparative accuracy of selected multiple scattering approximations. J. Atmos. Sci., 43, 784801.

    • Search Google Scholar
    • Export Citation
  • King, M. D., S.-C. Tsay, S. E. Platnick, M. Wang, and K.-N. Liou, 1997: Cloud retrieval algorithms for MODIS: Optical thickness, effective particle radius, and thermodynamic phase. MODIS Algorithm Theoretical Basis Document ATBD-MOD-05, NASA, 78 pp.

  • Klein, S. A., 1997: Synoptic variability of low-cloud properties and meteorological parameters in the subtropical trade wind boundary layer. J. Climate, 10, 20182039.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15881606.

  • Klein, S. A., and C. Jakob, 1999: Validation and sensitivities of frontal clouds simulated by the ECMWF model. Mon. Wea. Rev., 127, 25142531.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., D. L. Hartmann, and J. R. Norris, 1995: On the relationships among low-cloud structure, sea surface temperature, and atmospheric circulation in the summertime northeast Pacific. J. Climate, 8, 11401155.

    • Search Google Scholar
    • Export Citation
  • Kloesel, K. A., 1992: A 70-year history of marine stratocumulus cloud field experiments off the coast of California. Bull. Amer. Meteor. Soc., 73, 15811585.

    • Search Google Scholar
    • Export Citation
  • Kogan, Y. L., and W. J. Martin, 1994: Parameterization of bulk condensation in numerical models. J. Atmos. Sci., 51, 17281739.

  • Kogan, Y. L., M. P. Khairoutdinov, D. K. Lilly, Z. N. Kogan, and Q. Liu, 1995: The simulation of a convective cloud in a 3-D model with explicit microphysics. Part I: Model description and sensitivity experiments. J. Atmos. Sci., 52, 29232940.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., and B. Albrecht, 2000: The turbulence structure in a continental stratocumulus cloud from millimeter-wavelength radar observations. J. Atmos. Sci., 57, 24172434.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., G. Tselioudis, and B. A. Albrecht, 2007: Cloud climatology at the Southern Great Plains and the layer structure, drizzle, and atmospheric modes of continental stratus. J. Geophys. Res., 112, D09116, doi:10.1029/2006JD007307.

    • Search Google Scholar
    • Export Citation
  • Koponen, I. K., A. Virkkula, R. Hillamo, V. M. Kerminen, and M. Kulmala, 2003: Number size distributions and concentrations of the continental summer aerosols in Queen Maud Land, Antarctica. J. Geophys. Res., 108, 4587, doi:10.1029/2003JD003614.

    • Search Google Scholar
    • Export Citation
  • Kraus, E., 1963: The diurnal precipitation change over the sea. J. Atmos. Sci., 20, 551556.

  • Krueger, S. K., G. T. McLean, and Q. Fu, 1995a: Numerical simulation of the stratus-to-cumulus transition in the subtropical marine boundary layer. Part I: Boundary-layer structure. J. Atmos. Sci., 52, 28392850.

    • Search Google Scholar
    • Export Citation
  • Krueger, S. K., G. T. McLean, and Q. Fu, 1995b: Numerical simulation of the stratus-to-cumulus transition in the subtropical marine boundary layer. Part II: Boundary layer circulation. J. Atmos. Sci., 52, 28512868.

    • Search Google Scholar
    • Export Citation
  • Kubar, T. L., D. L. Hartmann, and R. Wood, 2009: On the importance of macrophysics and microphysics for precipitation in warm clouds. Part I: Satellite observations. J. Atmos. Sci., 66, 29532972.

    • Search Google Scholar
    • Export Citation
  • Kulmala, M., A. Laaksonen, P. Korhonen, T. Vesala, T. Ahonen, and J. C. Barrett, 1993: The effect of atmospheric nitric-acid vapor on cloud condensation nucleus activation. J. Geophys. Res., 98 (D12), 22 94922 958.

    • Search Google Scholar
    • Export Citation
  • Kuo, H.-C., and W. H. Schubert, 1988: Stability of cloud-topped boundary layers. Quart. J. Roy. Meteor. Soc., 114, 887916.

  • Larson, V. E., K. E. Kotenberg, and N. B. Wood, 2007: An analytic longwave radiation formula for liquid layer clouds. Mon. Wea. Rev., 135, 689699.

    • Search Google Scholar
    • Export Citation
  • Lau, N. C., and M. W. Crane, 1997: Comparing satellite and surface observations of cloud patterns in synoptic-scale circulation systems. Mon. Wea. Rev., 125, 31723189.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., B. A. Baker, C. G. Schmitt, and T. L. Jensen, 2001: An overview of microphysical properties of Arctic clouds observed in May and July 1998 during FIRE ACE. J. Geophys. Res., 106 (D14), 14 98915 014.

    • Search Google Scholar
    • Export Citation
  • Leaitch, W. R., and Coauthors, 1996: Physical and chemical observations in marine stratus during the 1993 North Atlantic Regional Experiment: Factors controlling cloud droplet number concentrations. J. Geophys. Res., 101 (D22), 29 12329 135.

    • Search Google Scholar
    • Export Citation
  • Lebsock, M. D., T. S. L’Ecuyer, and G. L. Stephens, 2011: Detecting the ratio of rain and cloud water in low-latitude shallow marine clouds. J. Appl. Meteor. Climatol., 50, 419432.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., W. Berg, J. Haynes, M. Lebsock, and T. Takemura, 2009: Global observations of aerosol impacts on precipitation occurrence in warm maritime clouds. J. Geophys. Res., 114, D09211, doi:10.1029/2008JD011273.

    • Search Google Scholar
    • Export Citation
  • Lee, S. S., J. E. Penner, and S. M. Saleeby, 2009: Aerosol effects on liquid-water path of thin stratocumulus clouds. J. Geophys. Res., 114, D07204, doi:10.1029/2008JD010513.

    • Search Google Scholar
    • Export Citation
  • Lenderink, G., and A. P. Siebesma, 2004: On the role of drizzle in stratocumulus and its implications for large-eddy simulation. Quart. J. Roy. Meteor. Soc., 130, 34293434.

    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., and B. B. Stankov, 1986: Length scales in the convective boundary layer. J. Atmos. Sci., 43, 11901209.

  • Lenschow, D. H., M. Y. Zhou, X. B. Zeng, L. S. Chen, and X. D. Xu, 2000: Measurements of fine-scale structure at the top of marine stratocumulus. Bound.-Layer Meteor., 97, 331357.

    • Search Google Scholar
    • Export Citation
  • Leon, D. C., Z. Wang, and D. Liu, 2008: Climatology of drizzle in marine boundary layer clouds based on 1 year of data from CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). J. Geophys. Res., 113, D00A14, doi:10.1029/2008JD009835.

    • Search Google Scholar
    • Export Citation
  • Lewellen, D. C., and W. S. Lewellen, 1998: Large-eddy boundary layer entrainment. J. Atmos. Sci., 55, 26452665.

  • Lewellen, D. C., and W. S. Lewellen, 2002: Entrainment and decoupling relations for cloudy boundary layers. J. Atmos. Sci., 59, 29662986.

    • Search Google Scholar
    • Export Citation
  • Li, J., J. W. Geldart, and P. Chylek, 1994: Solar radiative-transfer in clouds with vertical internal inhomogeneity. J. Atmos. Sci., 51, 25422552.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1968: Models of cloud-topped mixed layers under a strong inversion. Quart. J. Roy. Meteor. Soc., 94, 292309.

  • Lilly, D. K., 2002: Entrainment into mixed layers. Part II: A new closure. J. Atmos. Sci., 59, 33533361.

  • Lilly, D. K., and B. Stevens, 2008: Validation of a mixed-layer closure. I: Theoretical tests. Quart. J. Roy. Meteor. Soc., 134, 4755.

    • Search Google Scholar
    • Export Citation
  • Liou, K.-N., 1992: Radiation and Cloud Processes in the Atmosphere: Theory, Observation and Modeling. Oxford University Press, 504 pp.

  • Liu, Y., and P. H. Daum, 2004: On the parameterization of the autoconversion process. Part I: Analytical formulation of the Kessler-type parameterizations. J. Atmos. Sci., 61, 15391548.

    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., P. V. Hobbs, and K. R. Biswas, 1983: Precipitation from stratocumulus clouds affected by fallstreaks and artificial seeding. J. Climate Appl. Meteor., 22, 13931403.

    • Search Google Scholar
    • Export Citation
  • Lock, A. P., 1998: The parametrization of entrainment in cloudy boundary layers. Quart. J. Roy. Meteor. Soc., 124, 27292754.

  • Lock, A. P., 2009: Factors influencing cloud area at the capping inversion for shallow cumulus clouds. Quart. J. Roy. Meteor. Soc., 135, 941952.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., and J. Feichter, 2005: Global indirect aerosol effects: A review. Atmos. Chem. Phys., 5, 715737.

  • Long, A. B., 1974: Solutions to the droplet collection equation for polynomial kernels. J. Atmos. Sci., 31, 10401052.

  • Lu, M. L., W. C. Conant, H. H. Jonsson, V. Varutbangkul, R. C. Flagan, and J. H. Seinfeld, 2007: The Marine Stratus/Stratocumulus Experiment (MASE): Aerosol-cloud relationships in marine stratocumulus. J. Geophys. Res., 112, D10209, doi:10.1029/2006JD007985.

    • Search Google Scholar
    • Export Citation
  • Lu, M. L., A. Sorooshian, H. H. Jonsson, G. Feingold, R. C. Flagan, and J. H. Seinfeld, 2009: Marine stratocumulus aerosol-cloud relationships in the MASE-II experiment: Precipitation susceptibility in eastern Pacific marine stratocumulus. J. Geophys. Res., 114, D24203, doi:10.1029/2009JD012774.

    • Search Google Scholar
    • Export Citation
  • MacVean, M. K., 1993: A numerical investigation of the criterion for cloud-top entrainment instability. J. Atmos. Sci., 50, 24812495.

    • Search Google Scholar
    • Export Citation
  • MacVean, M. K., and P. J. Mason, 1990: Cloud-top entrainment instability through small-scale mixing and its parameterization in numerical models. J. Atmos. Sci., 47, 10121030.

    • Search Google Scholar
    • Export Citation
  • Martin, G. M., D. W. Johnson, and A. Spice, 1994: The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds. J. Atmos. Sci., 51, 18231842.

    • Search Google Scholar
    • Export Citation
  • Martin, G. M., D. W. Johnson, D. P. Rogers, P. R. Jonas, P. Minnis, and D. A. Hegg, 1995: Observations of the interaction between cumulus clouds and warm stratocumulus clouds in the marine boundary layer during ASTEX. J. Atmos. Sci., 52, 29022922.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., G. Zhang, M. R. Poellot, G. L. Kok, R. McCoy, T. Tooman, A. Fridlind, and A. J. Heymsfield, 2007: Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment: 1. Observations. J. Geophys. Res., 112, D24201, doi:10.1029/2007JD008633.

    • Search Google Scholar
    • Export Citation
  • McFiggans, G., and Coauthors, 2006: The effect of physical and chemical aerosol properties on warm cloud droplet activation. Atmos. Chem. Phys., 6, 25932649.

    • Search Google Scholar
    • Export Citation
  • Mechem, D. B., and Y. Kogan, 2003: Simulating the transition from drizzling marine stratocumulus to boundary layer cumulus with a mesoscale model. Mon. Wea. Rev., 131, 23422360.

    • Search Google Scholar
    • Export Citation
  • Mechem, D. B., Y. Kogan, and D. M. Schultz, 2010: Large-eddy observation of post-cold-frontal continental stratocumulus. J. Atmos. Sci., 67, 33683383.

    • Search Google Scholar
    • Export Citation
  • Mellado, B., 2010: The evaporatively driven cloud-top mixing layer. J. Fluid Mech., 660, 536.

  • Miles, N. L., J. Verlinde, and E. E. Clothiaux, 2000: Cloud droplet size distributions in low-level stratiform clouds. J. Atmos. Sci., 57, 295311.

    • Search Google Scholar
    • Export Citation
  • Miller, M. A., and B. A. Albrecht, 1995: Surface-based observations of mesoscale cumulus-stratocumulus interaction during ASTEX. J. Atmos. Sci., 52, 28092826.

    • Search Google Scholar
    • Export Citation
  • Miller, M. A., M. P. Jensen, and E. E. Clothiaux, 1998: Diurnal cloud and thermodynamic variations in the stratocumulus transition regime: A case study using in situ and remote sensors. J. Atmos. Sci., 55, 22942310.

    • Search Google Scholar
    • Export Citation
  • Mitchell, T. P., and J. M. Wallace, 1992: The annual cycle in equatorial convection and sea surface temperature. J. Climate, 5, 11401156.

    • Search Google Scholar
    • Export Citation
  • Moeng, C. H., S. H. Shen, and D. A. Randall, 1992: Physical processes within the nocturnal stratus-topped boundary layer. J. Atmos. Sci., 49, 23842401.

    • Search Google Scholar
    • Export Citation
  • Moeng, C. H., and Coauthors, 1996: Simulation of a stratocumulus-topped planetary boundary layer: Intercomparison among different numerical codes. Bull. Amer. Meteor. Soc., 77, 261278.

    • Search Google Scholar
    • Export Citation
  • Moeng, C. H., B. Stevens, and P. P. Sullivan, 2005: Where is the interface of the stratocumulus-topped PBL? J. Atmos. Sci., 62, 26262631.

    • Search Google Scholar
    • Export Citation
  • Mordy, W., 1959: Computations of the growth by condensation of a population of cloud droplets. Tellus, 11, 1644.

  • Moyer, K. A., and G. S. Young, 1994: Observations of mesoscale cellular convection from the marine stratocumulus phase of fire. Bound.-Layer Meteor., 71, 109134.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., M. D. King, J. D. Spinhirne, and L. F. Radke, 1991: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements: 2. Marine stratocumulus observations. J. Atmos. Sci., 48, 728750.

    • Search Google Scholar
    • Export Citation
  • Nastrom, G., and K. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42, 950960.

    • Search Google Scholar
    • Export Citation
  • Neiburger, M., D. S. Johnson, and C. W. Chien, 1961: Studies of the structure of the atmosphere over the eastern Pacific Ocean in summer: Part 1. The inversion over the eastern North Pacific Ocean. University of California Publ. in Meteorology, Vol. 1, University of California Press, 94 pp.

  • Nenes, A., and J. H. Seinfeld, 2003: Parameterization of cloud droplet formation in global climate models. J. Geophys. Res., 108, 4415, doi:10.1029/2002JD002911.

    • Search Google Scholar
    • Export Citation
  • Nenes, A., R. J. Charlson, M. C. Facchini, M. Kulmala, A. Laaksonen, and J. H. Seinfeld, 2002: Can chemical effects on cloud droplet number rival the first indirect effect? Geophys. Res. Lett., 29, 1848, doi:10.1029/2002GL015295.

    • Search Google Scholar
    • Export Citation
  • Nicholls, S., 1984: The dynamics of stratocumulus: Aircraft observations and comparisons with a mixed layer model. Quart. J. Roy. Meteor. Soc., 110, 783820.

    • Search Google Scholar
    • Export Citation
  • Nicholls, S., 1987: A model of drizzle growth in warm, turbulent, stratiform clouds. Quart. J. Roy. Meteor. Soc., 113, 11411170.

  • Nicholls, S., 1989: The structure of radiatively driven convection in stratocumulus. Quart. J. Roy. Meteor. Soc., 115, 487511.

  • Nicholls, S., and J. Leighton, 1986: An observational study of the structure of stratiform cloud sheets: Part I. Structure. Quart. J. Roy. Meteor. Soc., 112, 431460.

    • Search Google Scholar
    • Export Citation
  • Nicholls, S., and J. D. Turton, 1986: An observational study of the structure of stratiform cloud sheets: Part II. Entrainment. Quart. J. Roy. Meteor. Soc., 112, 461480.

    • Search Google Scholar
    • Export Citation
  • Nieuwstadt, F. T. M., and J. A. Businger, 1984: Radiative cooling near the top of a cloudy mixed layer. Quart. J. Roy. Meteor. Soc., 110, 10731078.

    • Search Google Scholar
    • Export Citation
  • Nieuwstadt, F. T. M., and P. G. Duynkerke, 1996: Turbulence in the atmospheric boundary layer. Atmos. Res., 40, 111142.

  • Norris, J. R., 1998: Low cloud type over the ocean from surface observations. Part I: Relationship to surface meteorology and the vertical distribution of temperature and moisture. J. Climate, 11, 369382.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., and C. B. Leovy, 1994: Interannual variability in stratiform cloudiness and sea surface temperature. J. Climate, 7, 19151925.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., and S. A. Klein, 2000: Low cloud type over the ocean from surface observations. Part III: Relationship to vertical motion and the regional synoptic environment. J. Climate, 13, 245256.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., and A. Slingo, 2009: Trends in observed cloudiness and Earth’s radiation budget: What do we not know and what do we need to know? Clouds in the Perturbed Climate System: Their Relationship to Energy Balance, Atmospheric Dynamics, and Precipitation, J. Heintzenberg and R. Charlson, Eds., MIT Press, 17–36.

  • Norris, J. R., Y. Zhang, and J. M. Wallace, 1998: Role of low clouds in summertime atmosphere–ocean interactions over the North Pacific. J. Climate, 11, 24822490.

    • Search Google Scholar
    • Export Citation
  • Nucciarone, J. J., and G. S. Young, 1991: Aircraft measurements of turbulence spectra in the marine stratocumulus-topped boundary layer. J. Atmos. Sci., 48, 23822392.

    • Search Google Scholar
    • Export Citation
  • O’Dell, C. W., F. J. Wentz, and R. Bennartz, 2008: Cloud liquid water path from satellite-based passive microwave observations: A new climatology over the global oceans. J. Climate, 21, 17211738.

    • Search Google Scholar
    • Export Citation
  • O’Dowd, C. D., J. A. Lowe, M. H. Smith, B. Davison, C. N. Hewitt, and R. M. Harrison, 1997: Biogenic sulphur emissions and inferred non-sea-salt-sulphate cloud condensation nuclei in and around Antarctica. J. Geophys. Res., 102 (D11), 12 83912 854.

    • Search Google Scholar
    • Export Citation
  • O’Dowd, C. D., J. A. Lowe, M. H. Smith, and A. D. Kaye, 1999a: The relative importance of non-sea-salt sulphate and sea-salt aerosol to the marine cloud condensation nuclei population: An improved multi-component aerosol-cloud droplet parametrization. Quart. J. Roy. Meteor. Soc., 125, 12951313.

    • Search Google Scholar
    • Export Citation
  • O’Dowd, C. D., J. A. Lowe, and M. H. Smith, 1999b: Coupling sea-salt and sulphate interactions and its impact on cloud droplet concentration predictions. Geophys. Res. Lett., 26, 13111314.

    • Search Google Scholar
    • Export Citation
  • O’Hirok, W., and C. Gautier, 1998: A three-dimensional radiative transfer model to investigate the solar radiation within a cloudy atmosphere. Part II: Spectral effects. J. Atmos. Sci., 55, 30653076.

    • Search Google Scholar
    • Export Citation
  • Ohtake, T., 1963: Hemispheric investigations of warm rain by radiosonde data. J. Appl. Meteor., 2, 594607.

  • Paltridge, G. W., 1974: Infrared emissivity, shortwave albedo, and the microphysics of stratiform water clouds. J. Geophys. Res., 79, 40534058.

    • Search Google Scholar
    • Export Citation
  • Paluch, I. R., and D. H. Lenschow, 1991: Stratiform cloud formation in the marine boundary layer. J. Atmos. Sci., 48, 21412158.

  • Paluch, I. R., D. H. Lenschow, S. Siems, S. McKeen, G. L. Kok, and R. D. Schillawski, 1994: Evolution of the subtropical marine boundary-layer–comparison of soundings over the eastern Pacific from FIRE and HARP. J. Atmos. Sci., 51, 14651479.

    • Search Google Scholar
    • Export Citation
  • Park, S., C. B. Leovy, and M. A. Rozendaal, 2004: A new heuristic marine boundary layer cloud model. J. Atmos. Sci., 61, 30023024.

  • Park, S., C. Deser, and M. Alexander, 2005: Estimation of the surface heat flux response to sea surface temperature anomalies over the global oceans. J. Climate, 18, 45824599.

    • Search Google Scholar
    • Export Citation
  • Pawlowska, H., and J. L. Brenguier, 2003: An observational study of drizzle formation in stratocumulus clouds for general circulation model (GCM) parameterizations. J. Geophys. Res., 108, 8630, doi:10.1029/2002JD002679.

    • Search Google Scholar
    • Export Citation
  • Petters, M. D., J. R. Snider, B. Stevens, G. Vali, I. Faloona, and L. Russell, 2006: Accumulation mode aerosol, pockets of open cells, and particle nucleation in the remote subtropical Pacific marine boundary layer. J. Geophys. Res., 111, D02206, doi:10.1029/2004JD005694.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., 1995: Frequencies and characteristics of global oceanic precipitation from shipboard present-weather reports. Bull. Amer. Meteor. Soc., 76, 15931616.

    • Search Google Scholar
    • Export Citation
  • Pinnick, R. G., S. G. Jennings, P. Chylek, and H. J. Auvermann, 1979: Verification of a linear relation between IR extinction, absorption and liquid water-content of fogs. J. Atmos. Sci., 36, 15771586.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M. B., and A. P. Khain, 1997: Turbulence effects on droplet growth and size distribution in clouds–a review. J. Aerosol Sci., 28, 11771214.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M. B., A. P. Khain, and M. Shapiro, 2001: Collision efficiency of drops in a wide range of Reynolds numbers: Effects of pressure on spectrum evolution. J. Atmos. Sci., 58, 742764.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., and S. Twomey, 1994: Determining the susceptibility of cloud albedo to changes in droplet concentration with the Advanced Very High Resolution Radiometer. J. Appl. Meteor., 33, 334347.

    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., 1976: Infrared absorption and liquid water content in stratocumulus clouds. Quart. J. Roy. Meteor. Soc., 102, 553556.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic Publishers, 976 pp.

  • Ramaswamy, V., and S. M. Freidenreich, 1991: Solar radiative line-by-line determination of water vapor absorption and water cloud extinction in inhomogeneous atmospheres. J. Geophys. Res., 96 (D5), 91339157.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., 1980: Conditional instability of the first kind upside down. J. Atmos. Sci., 37, 125130.

  • Randall, D. A., 1984: Stratocumulus cloud deepening through entrainment. Tellus, 36A, 446457.

  • Randall, D. A., and M. J. Suarez, 1984: On the dynamics of stratocumulus formation and dissipation. J. Atmos. Sci., 41, 30523057.

  • Randall, D. A., J. A. Coakley, C. W. Fairall, R. A. Knopfli, and D. H. Lenschow, 1984: Outlook for research on marine subtropical stratocumulus clouds. Bull. Amer. Meteor. Soc., 65, 12901301.

    • Search Google Scholar
    • Export Citation
  • Rangno, A. L., and P. V. Hobbs, 1991: Ice particle concentrations and precipitation development in small polar maritime cumuliform clouds. Quart. J. Roy. Meteor. Soc., 117, 207241.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., I. Geresdi, G. Thompson, K. Manning, and E. Karplus, 2002: Freezing drizzle formation in stably stratified layer clouds: The role of radiative cooling of cloud droplets, cloud condensation nuclei, and ice initiation. J. Atmos. Sci., 59, 837860.

    • Search Google Scholar
    • Export Citation
  • Richter, I., and C. R. Mechoso, 2004: Orographic influences on the annual cycle of Namibian stratocumulus clouds. Geophys. Res. Lett., 31, L24108, doi:10.1029/2004GL020814.

    • Search Google Scholar
    • Export Citation
  • Richter, I., and C. R. Mechoso, 2006: Orographic influences on subtropical stratocumulus. J. Atmos. Sci., 63, 25852601.

  • Riehl, H., and J. S. Malkus, 1957: On the heat balance and maintenance of circulation in the trades. Quart. J. Roy. Meteor. Soc., 83, 2129.

    • Search Google Scholar
    • Export Citation
  • Riehl, H., T. C. Yeh, J. S. Malkus, and N. E. LaSeur, 1951: The north-east trade of the Pacific Ocean. Quart. J. Roy. Meteor. Soc., 77, 598626.

    • Search Google Scholar
    • Export Citation
  • Roach, W. T., 1961: Some aircraft observations of fluxes of solar radiation in the atmosphere. Quart. J. Roy. Meteor. Soc., 87, 346363.

    • Search Google Scholar
    • Export Citation
  • Roach, W. T., and A. Slingo, 1979: A high resolution infrared radiative transfer scheme to study the interaction of radiation with cloud. Quart. J. Roy. Meteor. Soc., 105, 603614.

    • Search Google Scholar
    • Export Citation
  • Roach, W. T., R. Brown, S. J. Caughey, B. A. Crease, and A. Slingo, 1982: A field-study of nocturnal stratocumulus: 1. Mean structure and budgets. Quart. J. Roy. Meteor. Soc., 108, 103123.

    • Search Google Scholar
    • Export Citation
  • Rogers, D. P., and D. Koracin, 1992: Radiative transfer and turbulence in the cloud-topped marine atmospheric boundary layer. J. Atmos. Sci., 49, 14731486.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and W. B. Garder, 1993: Cloud detection using satellite measurements of infrared and visible radiances for ISCCP. J. Climate, 6, 23412369.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., C. Delo, and B. Cairns, 2002: Implications of the observed mesoscale variations of clouds for earth’s radiation budget. J. Climate, 15, 557585.

    • Search Google Scholar
    • Export Citation
  • Rothermel, J., and E. M. Agee, 1980: Aircraft investigation of mesoscale cellular convection during AMTEX75. J. Atmos. Sci., 37, 10271040.

    • Search Google Scholar
    • Export Citation
  • Rozendaal, M. A., C. B. Leovy, and S. A. Klein, 1995: An observational study of the diurnal cycle of marine stratiform cloud. J. Climate, 8, 17951809.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the “seeder-feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40, 11851206.

    • Search Google Scholar
    • Export Citation
  • Sandu, I., B. Stevens, and R. Pincus, 2010: On the transitions in marine boundary layer cloudiness. Atmos. Chem. Phys. Discuss., 10, 23772391.

    • Search Google Scholar
    • Export Citation
  • Savic-Jovcic, V., and B. Stevens, 2008: The structure and mesoscale organization of precipitating stratocumulus. J. Atmos. Sci., 65, 15871605.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., 1976: Experiments with Lilly’s cloud-topped mixed layer model. J. Atmos. Sci., 33, 436446.

  • Schubert, W. H., J. S. Wakefield, E. J. Steiner, and S. K. Cox, 1979a: Marine stratocumulus convection. Part I: Governing equations and horizontally homogeneous solutions. J. Atmos. Sci., 36, 12861307.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., J. S. Wakefield, E. J. Steiner, and S. K. Cox, 1979b: Marine stratocumulus convection. Part II: Horizontally inhomogeneous solutions. J. Atmos. Sci., 36, 13081324.

    • Search Google Scholar
    • Export Citation
  • Schultz, D., D. Arndt, D. Stensrud, and J. Hanna, 2004: Snowbands during the cold-air outbreak of 23 January 2003. Mon. Wea. Rev., 132, 827842.

    • Search Google Scholar
    • Export Citation
  • Sears-Collins, A. L., D. M. Schultz, and R. H. Johns, 2006: Spatial and temporal variability of nonfreezing drizzle in the United States and Canada. J. Climate, 19, 36293639; Corrigendum, 21, 14471448.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., L. Nuijens, and B. Stevens, 2010: Turbulence effects on warm-rain autoconversion in precipitating shallow convection. Quart. J. Roy. Meteor. Soc., 136, 17531762.

    • Search Google Scholar
    • Export Citation
  • Seinfeld, J. H., and S. N. Pandis, 1997: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Wiley-Interscience, 1326 pp.

  • Serpetzoglou, E., B. A. Albrecht, P. Kollias, and C. W. Fairall, 2008: Boundary layer, cloud, and drizzle variability in the southeast Pacific stratocumulus regime. J. Climate, 21, 61916214.

    • Search Google Scholar
    • Export Citation
  • Shao, Q., and D. A. Randall, 1996: Closed mesoscale cellular convection driven by cloud-top radiative cooling. J. Atmos. Sci., 53, 21442165.

    • Search Google Scholar
    • Export Citation
  • Sharon, T. M., B. A. Albrecht, H. Jonsson, P. Minnis, M. M. Khaiyer, T. M. VanReken, J. Seinfeld, and R. Flagan, 2006: Aerosol and cloud microphysical characteristics of rifts and gradients in maritime stratocumulus clouds. J. Atmos. Sci., 63, 983997.

    • Search Google Scholar
    • Export Citation
  • Siebert, H., H. Franke, K. Lehmann, R. Maser, E. Saw, D. Schell, R. A. Shaw, and M. Wendisch, 2006a: Probing finescale dynamics and microphysics of clouds with helicopter-borne measurements. Bull. Amer. Meteor. Soc., 87, 17271738.

    • Search Google Scholar
    • Export Citation
  • Siebert, H., K. Lehmann, and M. Wendisch, 2006b: Observations of small-scale turbulence and energy dissipation rates in the cloudy boundary layer. J. Atmos. Sci., 63, 14511466.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A., and Coauthors, 2004: Cloud representation in general-circulation models over the northern Pacific Ocean: A EUROCS intercomparison study. Quart. J. Roy. Meteor. Soc., 130, 32453267.

    • Search Google Scholar
    • Export Citation
  • Siems, S. T., C. Bretherton, M. Baker, S. Shy, and R. Breidenthal, 1990: Buoyancy reversal and cloud-top entrainment instability. Quart. J. Roy. Meteor. Soc., 116, 705739.

    • Search Google Scholar
    • Export Citation
  • Siems, S. T., D. H. Lenschow, and C. S. Bretherton, 1993: A numerical study of the interaction between stratocumulus and the air ovserlying it. J. Atmos. Sci., 50, 36633676.

    • Search Google Scholar
    • Export Citation
  • Slingo, A., 1989: A GCM parameterization for the shortwave properties of water clouds. J. Atmos. Sci., 46, 14191427.

  • Slingo, A., 1990: Sensitivity of the Earth’s radiation budget to changes is low clouds. Nature, 343, 4951.

  • Slingo, A., and H. M. Schrecker, 1982: On the shortwave radiative properties of stratiform water clouds. Quart. J. Roy. Meteor. Soc., 108, 407426.

    • Search Google Scholar
    • Export Citation
  • Slingo, A., R. Brown, and C. L. Wrench, 1982a: A field-study of nocturnal stratocumulus. 3. High-resolution radiative and microphysical observations. Quart. J. Roy. Meteor. Soc., 108, 145165.

    • Search Google Scholar
    • Export Citation
  • Slingo, A., S. Nicholls, and J. Schmetz, 1982b: Aircraft observations of marine stratocumulus during JASIN. Quart. J. Roy. Meteor. Soc., 108, 833856.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., 1987: The development and verification of a cloud prediction scheme for the ECMWF model. Quart. J. Roy. Meteor. Soc., 113, 899927.

    • Search Google Scholar
    • Export Citation
  • Snider, J. R., S. Guibert, J. L. Brenguier, and J. P. Putaud, 2003: Aerosol activation in marine stratocumulus clouds: 2. Kohler and parcel theory closure studies. J. Geophys. Res., 108, 8629, doi:10.1029/2002JD002692.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., and G. A. Vecchi, 2011: The vertical distribution of cloud feedback in coupled ocean-atmosphere models. Geophys. Res. Lett., 38, L12704, doi:10.1029/2011GL047632.

    • Search Google Scholar
    • Export Citation
  • Solomon, A., M. D. Shupe, P. O. G. Persson, and H. Morrison, 2011: Moisture and dynamical interactions maintaining decoupled arctic mixed-phase stratocumulus in the presence of a humidity inversion. Atmos. Chem. Phys. Discuss., 11, 13 46913 524.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, A., G. Feingold, M. Lebsock, H. Jiang, and G. Stephens, 2009: On the precipitation susceptibility of clouds to aerosol perturbations. Geophys. Res. Lett., 36, L13803, doi:10.1029/2009GL038993.

    • Search Google Scholar
    • Export Citation
  • Squires, P., 1952: The growth of cloud drops by condensation. 1: General characteristics. Aust. J. Sci. Res., 5, 5986.

  • Stage, S. A., and J. A. Businger, 1981: A model for entrainment into a cloud-topped marine boundary-layer. 1. Model description and application to a cold-air outbreak episode. J. Atmos. Sci., 38, 22132229.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 1978a: Radiation profiles in extended water clouds: 1. Theory. J. Atmos. Sci., 35, 21112122.

  • Stephens, G. L., 1978b: Radiation profiles in extended water clouds: 2. Parameterization schemes. J. Atmos. Sci., 35, 21232132.

  • Stephens, G. L., and T. J. Greenwald, 1991: Observations of the Earth’s radiation budget in relation to atmospheric hydrology. Part II: Cloud effects and cloud feedback. J. Geophys. Res., 96, 15 32515 340.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., G. W. Paltridge, and C. M. R. Platt, 1978: Radiation profiles in extended water clouds: 3. Observations. J. Atmos. Sci., 35, 21332141.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., S. Ackerman, and E. A. Smith, 1984: A shortwave parameterization revised to improve cloud absorption. J. Atmos. Sci., 41, 687690.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., 2000: Cloud-transitions and decoupling in shear-free stratocumulus-topped boundary layers. Geophys. Res. Lett., 27 (16), 25572560.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., 2002: Entrainment in stratocumulus topped mixed layers. Quart. J. Roy. Meteor. Soc., 128, 26632690.

  • Stevens, B., 2005: Atmospheric moist convection. Annu. Rev. Earth Planet. Sci., 32, 605643.

  • Stevens, B., 2006: Bulk boundary-layer concepts for simplified models of tropical dynamics. Theor. Comput. Fluid Dyn., 20, 279304.

  • Stevens, B., 2010: Cloud top entrainment instability? J. Fluid Mech., 660, 14.

  • Stevens, B., and G. Feingold, 2009: Untangling aerosol effects on clouds and precipitation in a buffered system. Nature, 461 (7264), 607613.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., W. R. Cotton, G. Feingold, and C.-H. Moeng, 1998: Large-eddy simulations of strongly precipitating, shallow, stratocumulus-topped boundary layers. J. Atmos. Sci., 55, 36163638.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., C.-H. Moeng, and P. P. Sullivan, 1999: Large-eddy simulations of radiatively driven convection: Sensitivities to the representation of small scales. J. Atmos. Sci., 56, 39633984.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2001: Simulations of trade wind cumuli under a strong inversion. J. Atmos. Sci., 58, 18701891.

  • Stevens, B., J. J. Duan, J. C. McWilliams, M. Munnich, and J. D. Neelin, 2002: Entrainment, Rayleigh friction, and boundary layer winds over the tropical Pacific. J. Climate, 15, 3044.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2003a: Dynamics and Chemistry of Marine Stratocumulus—DYCOMS II. Bull. Amer. Meteor. Soc., 84, 579593.

  • Stevens, B., and Coauthors, 2003b: On entrainment rates in nocturnal marine stratocumulus. Quart. J. Roy. Meteor. Soc., 129, 34693493.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., G. Vali, K. Comstock, R. Wood, M. VanZanten, P. H. Austin, C. S. Bretherton, and D. H. Lenschow, 2005a: Pockets of open cells (POCs) and drizzle in marine stratocumulus. Bull. Amer. Meteor. Soc., 86, 5157.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2005b: Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Mon. Wea. Rev., 133, 14431462.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., A. Beljaars, S. Bordoni, C. Holloway, M. Kohler, S. Krueger, V. Savic-Jovcic, and Y. Y. Zhang, 2007: On the structure of the lower troposphere in the summertime stratocumulus regime of the northeast Pacific. Mon. Wea. Rev., 135, 9851005.

    • Search Google Scholar
    • Export Citation
  • Stewart, D. A., and O. M. Essenwanger, 1982: A survey of fog and related optical propagation characteristics. Rev. Geophys., 20, 481495.

    • Search Google Scholar
    • Export Citation
  • Sundararajan, R., and M. Tjernstrom, 2000: Observations and simulations of a non-stationary coastal atmospheric boundary layer. Quart. J. Roy. Meteor. Soc., 126, 445476.

    • Search Google Scholar
    • Export Citation
  • Szczodrak, M., P. H. Austin, and P. B. Krummel, 2001: Variability of optical depth and effective radius in marine stratocumulus clouds. J. Atmos. Sci., 58, 29122926.

    • Search Google Scholar
    • Export Citation
  • Taylor, J. P., J. M. Edwards, M. D. Glew, P. Hignett, and A. Slingo, 1996: Studies with a flexible new radiation code. 2. Comparisons with aircraft short-wave observations. Quart. J. Roy. Meteor. Soc., 122, 839861.

    • Search Google Scholar
    • Export Citation
  • Tennekes, H., and J. L. Lumley, 1972: A First Course in Turbulence. MIT Press, 293 pp.

  • Thompson, W., S. Burk, and J. Lewis, 2005: Fog and low clouds in a coastally trapped disturbance. J. Geophys. Res., 110, D18213, doi:10.1029/2004JD005522.

    • Search Google Scholar
    • Export Citation
  • Tjemkes, S. A., and P. G. Duynkerke, 1989: The nocturnal boundary layer: Model calculations compared with observations. J. Appl. Meteor., 28, 161175.

    • Search Google Scholar
    • Export Citation
  • Tjernstrom, M., and A. Rune, 2003: The structure of gradually transforming marine stratocumulus during the ASTEX first Lagrangian experiment. Quart. J. Roy. Meteor. Soc., 129, 10711100.

    • Search Google Scholar
    • Export Citation
  • Toniazzo, T., S. J. Abel, R. Wood, C. R. Mechoso, G. Allen, and L. C. Shaffrey, 2011: Large-scale and synoptic meteorology in the south-east Pacific during the observations campaign VOCALS-REx in austral Spring 2008. Atmos. Chem. Phys., 11, 49775009, doi:10.5194/acp-11-4977-2011.

    • Search Google Scholar
    • Export Citation
  • Tripoli, G. J., and W. R. Cotton, 1980: A numerical investigation of several factors contributing to the observed variable density of deep convection over South Florida. J. Appl. Meteor., 19, 10371063.

    • Search Google Scholar
    • Export Citation
  • Turton, J. D., and S. Nicholls, 1987: A study of the diurnal variation of stratocumulus using a multiple mixed layer model. Quart. J. Roy. Meteor. Soc., 113, 9691009.

    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., M. D. Petters, J. R. Snider, B. Stevens, W. Tahnk, M. Wetzel, L. Russell, and F. Burnet, 2005: Evaluation of the aerosol indirect effect in marine stratocumulus clouds: Droplet number, size, liquid water path, and radiative impact. J. Geophys. Res., 110, D08203, doi:10.1029/2004JD005116.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1959: The nuclei of natural cloud formation. Part II: The supersaturation in natural clouds and the variation of cloud droplet concentration. Geofis. Pura Appl., 43, 243249.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1974: Pollution and the planetary albedo. Atmos. Environ., 8, 12511256.

  • Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 11491152.

  • Twomey, S., and C. F. Bohren, 1980: Simple approximations for calculations of absorption in clouds. J. Atmos. Sci., 37, 20862094.

  • Vaillancourt, P. A., and M. K. Yau, 2000: Review of particle–turbulence interactions and consequences for cloud physics. Bull. Amer. Meteor. Soc., 81, 285298.

    • Search Google Scholar
    • Export Citation
  • Vali, G., R. D. Kelly, J. French, H. S. D. Leon, A. McIntosh, and R. E. Pazmany, 1998: Finescale structure and microphysics of coastal stratus. J. Atmos. Sci., 55, 35403564.

    • Search Google Scholar
    • Export Citation
  • Vallis, G., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 745 pp.

  • vanZanten, M. C., and P. G. Duynkerke, 2002: Radiative and evaporative cooling in the entrainment zone of stratocumulus—The role of longwave radiative cooling above cloud top. Bound.-Layer Meteor., 102, 253280.

    • Search Google Scholar
    • Export Citation
  • vanZanten, M. C., and B. Stevens, 2005: Observations of the structure of heavily precipitating marine stratocumulus. J. Atmos. Sci., 62, 43274342.

    • Search Google Scholar
    • Export Citation
  • vanZanten, M. C., P. G. Duynkerke, and J. W. M. Cuijpers, 1999: Entrainment parameterization in convective boundary layers. J. Atmos. Sci., 56, 813828.

    • Search Google Scholar
    • Export Citation
  • vanZanten, M. C., B. Stevens, G. Vali, and D. Lenschow, 2005: Observations of drizzle in nocturnal marine stratocumulus. J. Atmos. Sci., 62, 88106.

    • Search Google Scholar
    • Export Citation
  • Vohl, O., S. K. Mitra, S. Wurzler, K. Diehl, and H. R. Pruppacher, 2007: Collision efficiencies empirically determined from laboratory investigations of collisional growth of small raindrops in a laminar flow field. Atmos. Res., 85, 120125.

    • Search Google Scholar
    • Export Citation
  • Walter, B. A., 1980: Wintertime observations of roll clouds over the Bering Sea. Mon. Wea. Rev., 108, 20242031.

  • Wang, H., and G. Feingold, 2009: Modeling mesoscale cellular structures and drizzle in marine stratocumulus. Part I: Impact of drizzle on the formation and evolution of open cells. J. Atmos. Sci., 66, 32373255.

    • Search Google Scholar
    • Export Citation
  • Wang, J. H., W. B. Rossow, T. Uttal, and M. Rozendaal, 1999: Variability of cloud vertical structure during ASTEX observed from a combination of rawinsonde, radar, ceilometer, and satellite. Mon. Wea. Rev., 127, 24842502.

    • Search Google Scholar
    • Export Citation
  • Wang, Q., and B. A. Albrecht, 1994: Observations of cloud-top entrainment in marine stratocumulus clouds. J. Atmos. Sci., 51, 15301547.

    • Search Google Scholar
    • Export Citation
  • Wang, Q., and D. H. Lenschow, 1995: An observational study of the role of penetrating cumulus in a marine stratocumulus-topped boundary layer. J. Atmos. Sci., 52, 29022922.

    • Search Google Scholar
    • Export Citation
  • Wang, S., and B. A. Albrecht, 1986: A stratocumulus model with an internal circulation. J. Atmos. Sci., 43, 23742391.

  • Wang, S., and Q. Wang, 1994: Roles of drizzle in a one-dimensional third-order turbulence closure model of the nocturnal stratus-topped marine boundary layer. J. Atmos. Sci., 51, 15591576.

    • Search Google Scholar
    • Export Citation
  • Wang, S., Q. Wang, and G. Feingold, 2003: Turbulence, condensation, and liquid water transport in numerically simulated nonprecipitating stratocumulus clouds. J. Atmos. Sci., 60, 262278.

    • Search Google Scholar
    • Export Citation
  • Wang, S., J. C. Golaz, and Q. Wang, 2008: Effect of intense wind shear across the inversion on stratocumulus clouds. Geophys. Res. Lett., 35, L15814, doi:10.1029/2008GL033865.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G., C. J. Hahn, J. London, R. M. Chervin, and R. L. Jenne, 1986: Global distribution of total cloud cover and cloud types over land. NCAR Tech. Note NCAR/TN-273+STR, National Center for Atmospheric Research, Boulder, CO, 29 pp. + 200 maps.

  • Warren, S. G., C. J. Hahn, J. London, R. M. Chervin, and R. L. Jenne, 1988: Global distribution of total cloud cover and cloud types over ocean. NCAR Tech. Note NCAR/TN-317+STR, National Center for Atmospheric Research, Boulder, CO, 42 pp. + 170 maps.

  • Weaver, C. J., and R. Pearson, 1990: Entrainment instability and vertical motion as causes of stratocumulus breakup. Quart. J. Roy. Meteor. Soc., 116, 13591388.

    • Search Google Scholar
    • Export Citation
  • Weaver, C. P., and V. Ramanathan, 1997: Relationships between large-scale vertical velocity, static stability, and cloud radiative forcing over Northern Hemisphere extratropical oceans. J. Climate, 10, 28712887.

    • Search Google Scholar
    • Export Citation
  • Weng, F. Z., and N. C. Grody, 1994: Retrieval of cloud liquid water using the Special Sensor Microwave Imager (SSM/I). J. Geophys. Res., 99 (D12), 25 53525 551.

    • Search Google Scholar
    • Export Citation
  • Weng, F. Z., N. C. Grody, R. Ferraro, A. Basist, and D. Forsyth, 1997: Cloud liquid water climatology from the Special Sensor Microwave/Imager. J. Climate, 10, 10861098.

    • Search Google Scholar
    • Export Citation
  • Wood, R., 2005a: Drizzle in stratiform boundary layer clouds. Part I: Vertical and horizontal structure. J. Atmos. Sci., 62, 30113033.

    • Search Google Scholar
    • Export Citation
  • Wood, R., 2005b: Drizzle in stratiform boundary layer clouds. Part II: Microphysical aspects. J. Atmos. Sci., 62, 30343050.

  • Wood, R., 2006: Rate of loss of cloud droplets by coalescence in warm clouds. J. Geophys. Res., 111, D21205, doi:10.1029/2006JD007553.

  • Wood, R., 2007: Cancellation of aerosol indirect effects in marine stratocumulus through cloud thinning. J. Atmos. Sci., 64, 26572669.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and J. P. Taylor, 2001: Liquid water path variability in unbroken marine stratocumulus. Quart. J. Roy. Meteor. Soc., 127, 26352662.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and C. S. Bretherton, 2004: Boundary layer depth, entrainment, and decoupling in the cloud-capped subtropical and tropical marine boundary layer. J. Climate, 17, 35763588.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and P. N. Blossey, 2005: Comments on “Parameterization of the autoconversion process. Part I: Analytical formation of the Kessler-type parameterizations.” J. Atmos. Sci., 62, 30033006.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and C. S. Bretherton, 2006: On the relationship between stratiform low cloud cover and lower-tropospheric stability. J. Climate, 19, 64256432.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and D. L. Hartmann, 2006: Spatial variability of liquid water path in marine boundary layer clouds: The importance of mesoscale cellular convection. J. Climate, 19, 17481764.

    • Search Google Scholar
    • Export Citation
  • Wood, R., C. S. Bretherton, and D. L. Hartmann, 2002a: Diurnal cycle of liquid water path over the subtropical and tropical oceans. Geophys. Res. Lett., 29, 2092, doi:10.1029/2002GL015371.

    • Search Google Scholar
    • Export Citation
  • Wood, R., P. R. Field, and W. R. Cotton, 2002b: Autoconversion rate bias in boundary layer cloud parameterizations. Atmos. Res., 65, 109128.

    • Search Google Scholar
    • Export Citation
  • Wood, R., K. K. Comstock, C. S. Bretherton, C. Cornish, J. Tomlinson, D. R. Collins, and C. Fairall, 2008: Open cellular structure in marine stratocumulus sheets. J. Geophys. Res., 113, D12207, doi:10.1029/2007JD009371.

    • Search Google Scholar
    • Export Citation
  • Wood, R., M. Köhler, R. Bennartz, and C. O’Dell, 2009a: The diurnal cycle of surface divergence over the global oceans. Quart. J. Roy. Meteor. Soc., 135, 14841493.

    • Search Google Scholar
    • Export Citation
  • Wood, R., T. Kubar, and D. L. Hartmann, 2009b: Understanding the importance of microphysics and macrophysics for warm rain in marine low clouds. Part II: Heuristic models of rain formation. J. Atmos. Sci., 66, 29732990.

    • Search Google Scholar
    • Export Citation
  • Wood, R., C. Bretherton, D. Leon, A. Clarke, P. Zuidema, G. Allen, and H. Coe, 2011a: An aircraft case study of the spatial transition from closed to open mesoscale cellular convection over the southeast Pacific. Atmos. Chem. Phys., 11, 23412370.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and Coauthors, 2011b: The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx): Goals, platforms, and field operations. Atmos. Chem. Phys., 11, 627654.

    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., C. S. Bretherton, H. A. Rand, and D. E. Stevens, 1997: Numerical simulations and a conceptual model of the stratocumulus to trade cumulus transition. J. Atmos. Sci., 54, 168192.

    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., C. S. Bretherton, J. T. Bacmeister, J. T. Kiehl, I. M. Held, M. Zhao, S. A. Klein, and B. A. Soden, 2006: A comparison of tropical cloud properties and their response to climate change in three AGCMs sorted into regimes using mid-tropospheric vertical velocity. Climate Dyn., 27, 261279.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., and R. A. Brost, 1984: Top-down and bottom-up diffusion of a scalar in the convective boundary layer. J. Atmos. Sci., 41, 102112.

    • Search Google Scholar
    • Export Citation
  • Xiao, H., C.-M. Wu, and C. R. Mechoso, 2010: Buoyancy reversal, decoupling and the transition from stratocumulus-topped to trade-wind cumulus-topped marine boundary layer. Climate Dyn., 37, 971984.

    • Search Google Scholar
    • Export Citation
  • Xu, H., Y. Wang, and S. P. Xie, 2004: Effects of the Andes on eastern Pacific climate: A regional atmospheric model study. J. Climate, 17, 589602.

    • Search Google Scholar
    • Export Citation
  • Xue, H., G. Feingold, and B. Stevens, 2008a: Aerosol effects on clouds, precipitation, and the organization of shallow cumulus convection. J. Atmos. Sci., 65, 392406.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., L. P. Wang, and W. W. Grabowski, 2008b: Growth of cloud droplets by turbulent collision-coalescence. J. Atmos. Sci., 65, 331356.

    • Search Google Scholar
    • Export Citation
  • Yamaguchi, T., and D. A. Randall, 2008: Large-eddy simulation of evaporatively driven entrainment in cloud-topped mixed layers. J. Atmos. Sci., 65, 14811504.

    • Search Google Scholar
    • Export Citation
  • Yang, S., and E. A. Smith, 2006: Mechanisms for diurnal variability of global tropical rainfall observed from TRMM. J. Climate, 19, 51905226.

    • Search Google Scholar
    • Export Citation
  • Young, G. S., and T. D. Sikora, 2003: Mesoscale stratocumulus bands caused by Gulf Stream meanders. Mon. Wea. Rev., 131, 21772191.

  • Yum, S. S., and J. G. Hudson, 2002: Maritime/continental microphysical contrasts in stratus. Tellus, 54B, 6173.

  • Yum, S. S., and J. G. Hudson, 2004: Wintertime/summertime contrasts of cloud condensation nuclei and cloud microphysics over the Southern Ocean. J. Geophys. Res., 109, D06204, doi:10.1029/2003JD003864.

    • Search Google Scholar
    • Export Citation
  • Zhang, M. H., and Coauthors, 2005: Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements. J. Geophys. Res., 110, D15S02, doi:10.1029/2004JD005021.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., B. Stevens, B. Medeiros, and M. Ghil, 2009: Low-cloud fraction, lower-tropospheric stability, and large-scale divergence. J. Climate, 22, 48274844.

    • Search Google Scholar
    • Export Citation
  • Zhu, P., B. Albrecht, and J. Gottschalck, 2001: Formation and development of nocturnal boundary layer clouds over the Southern Great Plains. J. Atmos. Sci., 58, 14091426.

    • Search Google Scholar
    • Export Citation
  • Zhu, P., and Coauthors, 2005: Intercomparison and interpretation of single-column model simulations of a nocturnal stratocumulus-topped marine boundary layer. Mon. Wea. Rev., 133, 27412758.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., and D. L. Hartmann, 1995: Satellite determination of stratus cloud microphysical properties. J. Climate, 8, 16381656.

  • Zuidema, P., E. R. Westwater, C. Fairall, and D. Hazen, 2005: Ship-based liquid water path estimates in marine stratocumulus. J. Geophys. Res., 110, D20206, doi:10.1029/2005JD005833.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 17821 7674 2385
PDF Downloads 7519 1896 200