Influences of Moist Convection on a Cold-Season Outbreak of Clear-Air Turbulence (CAT)

Stanley B. Trier National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Stanley B. Trier in
Current site
Google Scholar
PubMed
Close
,
Robert D. Sharman National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Robert D. Sharman in
Current site
Google Scholar
PubMed
Close
, and
Todd P. Lane The University of Melbourne, Melbourne, Australia

Search for other papers by Todd P. Lane in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The 9–10 March 2006 aviation turbulence outbreak over the central United States is examined using observations and numerical simulations. Though the turbulence occurs within a deep synoptic cyclone with widespread precipitation, comparison of reports from commercial aircraft with radar and satellite data reveals the majority of the turbulence to be in clear air. This clear-air turbulence (CAT) is located above a strong upper-level jet, where vertical shear ranged between 20 and 30 m s−1 km−1. Comparison of a moist simulation with a dry simulation reveals that simulated vertical shear and subgrid turbulence kinetic energy is significantly enhanced by the anticyclonic upper-level flow perturbation associated with the organized convection in regions of observed CAT.

A higher-resolution simulation is used to examine turbulence mechanisms in two primary clusters of reported moderate and severe turbulence. In the northern cluster where vertical shear is strongest, the simulated turbulence arises from Kelvin–Helmholtz (KH) instability. The turbulence farther south occurs several kilometers above shallow, but vigorous, moist convection. There, the simulated turbulence is influenced by vertically propagating gravity waves initiated when the convection impinges on a lowered tropopause. In some locations these gravity waves amplify and break leading directly to turbulence, while in others they aid turbulence development by helping excite KH instability within the layers of strongest vertical shear above them. Although both clusters of turbulence occur either above or laterally displaced from cloud, a shared characteristic is their owed existence to moist convection within the wintertime cyclone, which distinguishes them from traditional CAT.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Stanley B. Trier, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: trier@ucar.edu

Abstract

The 9–10 March 2006 aviation turbulence outbreak over the central United States is examined using observations and numerical simulations. Though the turbulence occurs within a deep synoptic cyclone with widespread precipitation, comparison of reports from commercial aircraft with radar and satellite data reveals the majority of the turbulence to be in clear air. This clear-air turbulence (CAT) is located above a strong upper-level jet, where vertical shear ranged between 20 and 30 m s−1 km−1. Comparison of a moist simulation with a dry simulation reveals that simulated vertical shear and subgrid turbulence kinetic energy is significantly enhanced by the anticyclonic upper-level flow perturbation associated with the organized convection in regions of observed CAT.

A higher-resolution simulation is used to examine turbulence mechanisms in two primary clusters of reported moderate and severe turbulence. In the northern cluster where vertical shear is strongest, the simulated turbulence arises from Kelvin–Helmholtz (KH) instability. The turbulence farther south occurs several kilometers above shallow, but vigorous, moist convection. There, the simulated turbulence is influenced by vertically propagating gravity waves initiated when the convection impinges on a lowered tropopause. In some locations these gravity waves amplify and break leading directly to turbulence, while in others they aid turbulence development by helping excite KH instability within the layers of strongest vertical shear above them. Although both clusters of turbulence occur either above or laterally displaced from cloud, a shared characteristic is their owed existence to moist convection within the wintertime cyclone, which distinguishes them from traditional CAT.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Stanley B. Trier, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: trier@ucar.edu
Save
  • Barnes, S. L., F. Caracena, and A. Marroquin, 1996: Extracting synoptic-scale diagnostic information from mesoscale models: The Eta model, gravity waves, and quasigeostrophic diagnostics. Bull. Amer. Meteor. Soc., 77, 519528.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2004: An hourly assimilation–forecast cycle: The RUC. Mon. Wea. Rev., 132, 495518.

  • Bertin, F., J. Barat, and R. Wilson, 1997: Energy dissipation rates, eddy diffusivity, and the Prandtl number: An in situ experimental approach and its consequences on radar estimate of turbulent parameters. Radio Sci., 32 (2), 791804, doi:10.1029/96RS03691.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and C. D. Watkins, 1970: Observations of clear air turbulence by high power radar. Nature, 227, 260263.

  • Chapman, D., and K. A. Browning, 1997: Radar observations of wind-shear splitting within evolving atmospheric Kelvin-Helmholtz billows. Quart. J. Roy. Meteor. Soc., 123, 14331439.

    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo. 104606, No. 3, 85 pp.

  • Clark, T. L., W. D. Hall, R. M. Kerr, D. Middleton, L. Radke, F. M. Ralph, P. J. Neiman, and D. Levinson, 2000: Origins of aircraft-damaging clear air turbulence during the 9 December 1992 Colorado downslope windstorm: Numerical simulations and comparisons with observations. J. Atmos. Sci., 57, 11051131.

    • Search Google Scholar
    • Export Citation
  • Cornman, L. B., C. S. Morse, and G. Cunning, 1995: Real-time estimation of atmospheric turbulence severity from in-situ aircraft measurements. J. Aircr., 32, 171177.

    • Search Google Scholar
    • Export Citation
  • Dutton, J. A., 1971: Clear-air turbulence, aviation, and atmospheric science. Rev. Geophys. Space Phys., 9, 613657.

  • Dutton, J. A., and H. A. Panofsky, 1970: Clear air turbulence: A mystery may be unfolding. Science, 167 (3920), 937944.

  • Ellrod, G. P., and D. I. Knapp, 1992: An objective clear-air turbulence forecasting technique: Verification and operational use. Wea. Forecasting, 7, 150165.

    • Search Google Scholar
    • Export Citation
  • Federal Aviation Administration, 1997: Advisory circular. AC No. 00-30B, 9 pp. [Available online at http://http://rgl.faa.gov/Regulatory_and_Guidance_Library/rgAdvisoryCircular.nsf/0/2b397ebd29693934862569ba00688e85/$FILE/ATTL5WYK/AC00-30B.pdf.]

  • Fovell, R. G., D. R. Durran, and J. R. Holton, 1992: Numerical simulation of convectively generated stratospheric gravity waves. J. Atmos. Sci., 49, 14271442.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R., and R. Sharman, 2010: Climatology of velocity and temperature turbulence statistics determined from rawinsonde and ACARS/AMDAR data. J. Appl. Meteor. Climatol., 49, 11491169.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and R. A. Maddox, 1981: Convectively driven mesoscale weather systems aloft. Part I: Observations. J. Appl. Meteor., 20, 919.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Q. Miao, 2010: Vertically pointing airborne Doppler radar observations of Kelvin–Helmholtz billows. Mon. Wea. Rev., 138, 982986.

    • Search Google Scholar
    • Export Citation
  • Hocking, W. K., and P. K. L. Mu, 1997: Upper and middle tropospheric kinetic energy dissipation rates from measurements of —Review of theories, in-situ investigations, and experimental studies using the Buckland Park atmospheric radar in Australia. J. Atmos. Sol.-Terr. Phys., 59, 17791803.

    • Search Google Scholar
    • Export Citation
  • International Civil Aviation Organization, 2001: Meteorological service for international air navigation. 14th ed. Annex 3 to the Convention on International Civil Aviation, 128 pp.

  • International Civil Aviation Organization, 2007: Meteorological service for international air navigation. 16th ed. Annex 3 to the Convention on International Civil Aviation, 187 pp. [Available online at http://www.wmo.int/pages/prog/www/ISS/Meetings/CT-MTDCF-ET-DRC_Geneva2008/Annex3_16ed.pdf.]

  • Jacobi, C., A. H. Siemer, and R. Roth, 1996: On wind shear at fronts and inversions. Meteor. Atmos. Phys., 59, 235243.

  • Janjic, Z. I., 2001: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso model. NCEP Office Note 437, 61 pp. [Available online at http://www.emc.ncep.noaa.gov/officenotes/newernotes/on437.pdf.]

  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181.

  • Kaplan, M. L., A. W. Huffman, K. M. Lux, J. J. Charney, A. J. Riordan, and Y.-L. Lin, 2005: Characterizing the severe turbulence environments associated with commercial aviation accidents. Meteor. Atmos. Phys., 88, 129152.

    • Search Google Scholar
    • Export Citation
  • Kennedy, P. J., and M. A. Shapiro, 1980: Further encounters with clear air turbulence in research aircraft. J. Atmos. Sci., 37, 986993.

    • Search Google Scholar
    • Export Citation
  • Keyser, D., and M. A. Shapiro, 1986: A review of the structure and dynamics of upper-level frontal zones. Mon. Wea. Rev., 114, 452499.

    • Search Google Scholar
    • Export Citation
  • Kim, J.-H., and H.-Y. Chun, 2010: A numerical study of clear-air turbulence (CAT) encounters over South Korea on 2 April 2007. J. Appl. Meteor. Climatol., 49, 23812403.

    • Search Google Scholar
    • Export Citation
  • Kim, J.-H., and H.-Y. Chun, 2011: Statistics and possible sources of aviation turbulence over South Korea. J. Appl. Meteor. Climatol., 50, 311324.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., J. Dudhia, and A. D. Hassiotis, 2008: An upper gravity-wave absorbing layer for NWP applications. Mon. Wea. Rev., 136, 39874004.

    • Search Google Scholar
    • Export Citation
  • Knox, J. A., D. W. McCann, and P. D. Williams, 2008: Application of the Lighthill–Ford theory of spontaneous imbalance to clear-air turbulence forecasting. J. Atmos. Sci., 65, 32923304.

    • Search Google Scholar
    • Export Citation
  • Knox, J. A., A. S. Bachmeier, W. M. Carter, J. E. Tarantino, L. C. Paulik, E. N. Wilson, G. S. Bechdol, and M. J. Mays, 2010: Transverse cirrus bands in weather systems: A grand tour of an enduring enigma. Weather, 65, 3541.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., and Coauthors, 2005: Turbulence and gravity waves in an upper-level front. J. Atmos. Sci., 62, 38853908.

  • Lane, T. P., and J. C. Knievel, 2005: Some effects of model resolution on simulated gravity waves generated by deep, mesoscale convection. J. Atmos. Sci., 62, 34083419.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., and R. D. Sharman, 2008: Some influences of background flow conditions on the generation of turbulence due to gravity wave breaking above deep convection. J. Appl. Meteor. Climatol., 47, 27772796.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., M. J. Reeder, and T. L. Clark, 2001: Numerical modeling gravity wave generation by deep tropical convection. J. Atmos. Sci., 58, 12491274.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., R. D. Sharman, T. L. Clark, and H.-M. Hsu, 2003: An investigation of turbulence generation mechanisms above deep convection. J. Atmos. Sci., 60, 12971321.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., J. D. Doyle, R. Plougonven, M. A. Shapiro, and R. D. Sharman, 2004: Observations and numerical simulations of inertia-gravity waves and shearing instabilities in the vicinity of a jet stream. J. Atmos. Sci., 61, 26922706.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., R. D. Sharman, S. B. Trier, R. G. Fovell, and J. K. Williams, 2012: Recent advances in the understanding of near-cloud turbulence. Bull. Amer. Meteor. Soc., 93, 499515.

    • Search Google Scholar
    • Export Citation
  • Lenz, A., K. M. Bedka, W. F. Feltz, and S. A. Ackerman, 2009: Convectively induced transverse band signatures in satellite imagery. Wea. Forecasting, 24, 13621373.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., D. E. Waco, and S. I. Adelfang, 1974: Stratospheric mixing estimated from high-altitude turbulence measurements. J. Appl. Meteor., 13, 488493.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of a snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092.

    • Search Google Scholar
    • Export Citation
  • Miles, J., 1986: Richardson’s criterion for the stability of stratified shear flow. Phys. Fluids, 29, 34703471.

  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 (D14), 16 66316 682.

    • Search Google Scholar
    • Export Citation
  • Murray, F. W., 1967: On the computation of saturation vapor pressure. J. Appl. Meteor., 6, 203204.

  • Nappo, C. J., 2002: An Introduction to Atmospheric Gravity Waves. Academic Press, 276 pp.

  • Nastrom, G. D., and D. C. Fritts, 1992: Sources of mesoscale variability of gravity waves. Part I: Topographic excitation. J. Atmos. Sci., 49, 101110.

    • Search Google Scholar
    • Export Citation
  • Pantley, K. C., and P. F. Lester, 1990: Observations of severe turbulence near thunderstorm tops. J. Appl. Meteor., 29, 11711179.

  • Prophet, D. T., 1970: Vertical extent of turbulence in clear air above the tops of thunderstorms. J. Appl. Meteor., 9, 320321.

  • Reiter, E. R., 1969: The nature of clear air turbulence: A review. Clear Air Turbulence and Its Detection, Y. H. Pao and A. Goldburg, Eds., Plenum Press, 733.

  • Reiter, E. R., and H. P. Foltz, 1967: The prediction of clear air turbulence over mountainous terrain. J. Appl. Meteor., 6, 549556.

  • Reiter, E. R., and P. F. Lester, 1968: Richardson’s number in the free atmosphere. Arch. Meteor. Geophys. Biokl., 17A, 17.

  • Schwartz, B., 1996: The quantitative use of PIREPs in developing aviation weather guidance products. Wea. Forecasting, 11, 372384.

  • Scorer, R. S., 1969: Billow mechanics. Radio Sci., 4, 12991308.

  • Shapiro, M. A., 1978: Further evidence for mesoscale and turbulent structure of upper-level jet stream-frontal zone systems. Mon. Wea. Rev., 106, 11001111.

    • Search Google Scholar
    • Export Citation
  • Sharman, R. D., C. Tebaldi, G. Weiner, and J. Wolff, 2006: An integrated approach to mid- and upper-level turbulence forecasting. Wea. Forecasting, 21, 268287.

    • Search Google Scholar
    • Export Citation
  • Sharman, R. D., J. D. Doyle, and M. A. Shapiro, 2012: An investigation of a commercial aircraft encounter with severe clear-air turbulence over western Greenland. J. Appl. Meteor. Climatol., 51, 4253.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 2002: Stratified flow over topography. Environmental Stratified Flows, R. Grimshaw, Ed., Kluwer, 121–159.

  • Trier, S. B., and R. D. Sharman, 2009: Convection-permitting simulations of the environment supporting widespread turbulence within the upper-level outflow of a mesoscale convective system. Mon. Wea. Rev., 137, 19721990.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., R. D. Sharman, R. G. Fovell, and R. G. Frehlich, 2010: Numerical simulation of radial cloud bands within the upper-level outflow of an observed mesoscale convective system. J. Atmos. Sci., 67, 29902999.

    • Search Google Scholar
    • Export Citation
  • Trout, D., and H. A. Panofsky, 1969: Energy dissipation near the tropopause. Tellus, 21, 355358.

  • Vinnichenko, N. K., and J. A. Dutton, 1969: Empirical studies of atmospheric structure and spectra in the free atmosphere. Radio Sci., 4, 11151126.

    • Search Google Scholar
    • Export Citation
  • Wolff, J. K., and R. D. Sharman, 2008: Climatology of upper-level turbulence over the contiguous United States. J. Appl. Meteor. Climatol., 47, 21982214.

    • Search Google Scholar
    • Export Citation
  • Wroblewski, D. E., O. R. Coté, J. M. Hacker, and R. J. Dobosy, 2007: Cliff-ramp patterns and Kelvin–Helmholtz billows in stably stratified shear flow in the upper troposphere: Analysis of aircraft measurements. J. Atmos. Sci., 64, 25212539.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 921 150 6
PDF Downloads 456 141 3