Comparisons of Single- and Double-Moment Microphysics Schemes in the Simulation of a Synoptic-Scale Snowfall Event

Andrew L. Molthan NASA Marshall Space Flight Center, Huntsville, Alabama

Search for other papers by Andrew L. Molthan in
Current site
Google Scholar
PubMed
Close
and
Brian A. Colle School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York

Search for other papers by Brian A. Colle in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Canadian CloudSat/Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) Validation Project (C3VP) provided aircraft, surface, and remotely sensed observations of cloud and precipitation characteristics to support improved simulation of cold-season precipitation within weather forecast models and new developments in satellite and radar precipitation retrievals. On 22 January 2007, the C3VP campaign executed an intensive observation period to sample widespread snowfall that occurred as a midlatitude cyclone tracked along the U.S.–Canadian border. Surface air temperature and precipitation measurements, combined with aircraft measurement of hydrometeor content and size distribution, are used to examine various assumptions and parameterizations included within four bulk water microphysics schemes available within the Weather Research and Forecasting Model (WRF).

In a simulation of the 22 January 2007 event, WRF forecasts reproduced the overall precipitation pattern observed during aircraft sampling, allowing for a comparison between C3VP measurements and microphysics scheme assumptions. Single-moment schemes that provide flexibility in size distribution parameters as functions of temperature can represent much of the vertical variability observed in aircraft data, but variability is reduced in an environment where the simulated temperature profile is nearly isothermal. Double-moment prediction of total number concentration may improve the representation of ice crystal aggregation. Inclusion of both temperature dependence on distribution parameters and variability in mass–diameter or diameter–fall speed relationships suggest a means of improving upon single-moment predictions.

Corresponding author address: Andrew Molthan, NASA Marshall Space Flight Center, 320 Sparkman Drive, Huntsville, AL 35805. E-mail: andrew.molthan@nasa.gov

Abstract

The Canadian CloudSat/Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) Validation Project (C3VP) provided aircraft, surface, and remotely sensed observations of cloud and precipitation characteristics to support improved simulation of cold-season precipitation within weather forecast models and new developments in satellite and radar precipitation retrievals. On 22 January 2007, the C3VP campaign executed an intensive observation period to sample widespread snowfall that occurred as a midlatitude cyclone tracked along the U.S.–Canadian border. Surface air temperature and precipitation measurements, combined with aircraft measurement of hydrometeor content and size distribution, are used to examine various assumptions and parameterizations included within four bulk water microphysics schemes available within the Weather Research and Forecasting Model (WRF).

In a simulation of the 22 January 2007 event, WRF forecasts reproduced the overall precipitation pattern observed during aircraft sampling, allowing for a comparison between C3VP measurements and microphysics scheme assumptions. Single-moment schemes that provide flexibility in size distribution parameters as functions of temperature can represent much of the vertical variability observed in aircraft data, but variability is reduced in an environment where the simulated temperature profile is nearly isothermal. Double-moment prediction of total number concentration may improve the representation of ice crystal aggregation. Inclusion of both temperature dependence on distribution parameters and variability in mass–diameter or diameter–fall speed relationships suggest a means of improving upon single-moment predictions.

Corresponding author address: Andrew Molthan, NASA Marshall Space Flight Center, 320 Sparkman Drive, Huntsville, AL 35805. E-mail: andrew.molthan@nasa.gov
Save
  • Barthazy, E., S. Goke, R. Schefold, and D. Hogl, 2004: An optical array instrument for shape and fall velocity measurements of hydrometeors. J. Atmos. Oceanic Technol., 21, 14001416.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107.

    • Search Google Scholar
    • Export Citation
  • Ek, M., M. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., R. J. Hogan, P. R. A. Brown, A. J. Illingworth, T. W. Choularton, and R. J. Cotton, 2005: Parameterization of ice-particle size distributions for mid-latitude stratiform cloud. Quart. J. Roy. Meteor. Soc., 131, 19972017.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and D. Devenyi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 1693, doi:10.1029/2002GL015311.

    • Search Google Scholar
    • Export Citation
  • Gunn, K. L. S., and J. S. Marshall, 1958: The distribution with size of aggregate snowflakes. J. Meteor., 15, 452461.

  • Heymsfield, A. J., 2003: Properties of tropical and midlatitude ice cloud particle ensembles. Part I: Median mass diameters and terminal velocities. J. Atmos. Sci., 60, 25732591.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, P. Field, S. Durden, J. Stith, J. Dye, W. Hall, and T. Grainger, 2002: Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59, 34573491.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, C. Schmitt, C. Twohy, and M. Poellot, 2004: Effective ice particle densities derived from aircraft data. J. Atmos. Sci., 61, 9821003.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., Z. Wang, and S. Matrosov, 2005: Improved radar ice water content retrieval algorithms using coincident microphysical and radar measurements. J. Appl. Meteor., 44, 13911412.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, and C. H. Twohy, 2007: Refinements to ice particle mass dimensional and terminal velocity relationships for ice clouds. Part I: Temperature dependence. J. Atmos. Sci., 64, 10471067.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., P. Field, and A. Bansemer, 2008: Exponential size distributions for snow. J. Atmos. Sci., 65, 40174031.

  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., K.-S. S. Lim, Y.-H. Lee, J.-C. Ha, H.-W. Kim, S.-J. Ham, and J. Dudhia, 2010: Evaluation of the WRF double-moment six-class microphysics scheme for precipitating convection. Adv. Meteor., 707, 253.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A. J., P. V. Hobbs, P. H. Herzegh, and D. B. Parsons, 1979: Size distributions of precipitation particles in frontal clouds. J. Atmos. Sci., 36, 156162.

    • Search Google Scholar
    • Export Citation
  • Hudak, D., P. Rodriguez, and N. Donaldson, 2008: Validation of the CloudSat precipitation occurrence algorithm using the Canadian C band radar network. J. Geophys. Res., 113, D00A07, doi:10.1029/2008JD009992.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1990: The step-mountain coordinate: Physical package. Mon. Wea. Rev., 118, 14291443.

  • Janjić, Z. I., 1996: The surface layer in the NCEP Eta model. Preprints, 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., 354–355.

  • Janjić, Z. I., 2001: Nonsingular implementation of the Mellor-Yamada level 2.5 Scheme in the NCEP Meso model. NCEP Office Note 437, 61 pp. [Available online at http://www.emc.ncep.noaa.gov/officenotes/newernotes/on437.pdf.]

  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulation. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.

  • Lang, S., W.-K. Tao, R. Cifelli, W. Olson, J. Halverson, S. Rutledge, and J. Simpson, 2007: Improving simulations of convective systems from TRMM LBA: Easterly and westerly regimes. J. Atmos. Sci., 64, 11411164.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., and B. A. Colle, 2011: A new bulk microphysical scheme that includes riming intensity and temperature dependent ice characteristics. Mon. Wea. Rev., 139, 10131035.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., L. J. Donner, and B. A. Colle, 2011: Parameterization of riming intensity and its impact on ice fall speed using ARM data. Mon. Wea. Rev., 139, 10361047.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., 1995: On the generalized theory of atmospheric particle systems. Adv. Atmos. Sci., 12, 419438.

  • Locatelli, J. D., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 21852197.

  • Lord, S. J., H. E. Willoughby, and J. M. Piotrowicz, 1984: Role of a parameterized ice-phase microphysics in an axisymmetric, non-hydrostatic tropical cyclone model. J. Atmos. Sci., 41, 28362848.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and W. M. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165166.

  • Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 30513064.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. J. Geophys. Res., 102 (D14), 16 66316 682.

    • Search Google Scholar
    • Export Citation
  • Molthan, A. L., and W. A. Petersen, 2011: Incorporating ice crystal scattering databases in the simulation of millimeter wavelength radar reflectivity. J. Atmos. Oceanic Technol., 28, 337351.

    • Search Google Scholar
    • Export Citation
  • Molthan, A. L., W. A. Petersen, S. W. Nesbitt, and D. Hudak, 2010: Evaluating the snow crystal size distribution and density assumptions within a single-moment microphysics scheme. Mon. Wea. Rev., 138, 42544267.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S., cited 2009: C3VP Merged Radar-Aircraft Data (CMRAD) Set. [Available online at http://c3vp.org/data/data.html.]

  • Petersen, W. A., and Coauthors, 2007: NASA GPM/PMM participation in the Canadian CloudSat/CALIPSO validation project C3VP: Physical process studies in snow. Preprints, 33rd Int. Conf. on Radar Meteorology, Cairns, Australia, Amer. Meteor. Soc., P12.8. [Available online at https://ams.confex.com/ams/33Radar/webprogram/Paper123652.html.]

  • Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part VII: A model for the seeder-feeder process in warm-frontal rainbands. J. Atmos. Sci., 40, 11851206.

    • Search Google Scholar
    • Export Citation
  • Ryan, B., 2000: A bulk parameterization of the ice particle size distribution and the optical properties in ice clouds. J. Atmos. Sci., 57, 14361451.

    • Search Google Scholar
    • Export Citation
  • Shi, J. J., and Coauthors, 2010: WRF simulations of the 20–22 January 2007 snow events over eastern Canada: Comparison with in situ and satellite observations. J. Appl. Meteor. Climatol., 49, 22462266.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the advanced research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 125 pp.

  • Smith, P. L., 1984: Equivalent radar reflectivity factors for snow and ice particles. J. Climate Appl. Meteor., 23, 12581260.

  • Smith, P. L., 2003: Raindrop size distributions: Exponential or gamma—does the difference matter? J. Appl. Meteor., 42, 10311034.

  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train. Bull. Amer. Meteor. Soc., 83, 17711790.

  • Tao, W.-K., and J. Simpson, 1993: Goddard cumulus ensemble model. Part I: Model description. Terr. Atmos. Ocean. Sci., 4, 3572.

  • Tao, W.-K., J. Simpson, and M. McCumber, 1989: An ice-water saturation adjustment. Mon. Wea. Rev., 117, 231235.

  • Tao, W.-K., and Coauthors, 2003: Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model. Meteor. Atmos. Phys., 82, 97137.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115.

    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., A. J. Schanot, and W. A. Cooper, 1997: Measurement of condensed water content in liquid and ice clouds using an airborne counterflow virtual impactor. J. Atmos. Oceanic Technol., 14, 197202.

    • Search Google Scholar
    • Export Citation
  • Yau, M. K., and P. M. Austin, 1979: A model for hydrometeor growth and evolution of raindrop size spectra in cumulus cells. J. Atmos. Sci., 36, 655668.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1763 621 20
PDF Downloads 1156 246 17