The Pretornadic Phase of the Goshen County, Wyoming, Supercell of 5 June 2009 Intercepted by VORTEX2. Part I: Evolution of Kinematic and Surface Thermodynamic Fields

Paul Markowski Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Paul Markowski in
Current site
Google Scholar
PubMed
Close
,
Yvette Richardson Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Yvette Richardson in
Current site
Google Scholar
PubMed
Close
,
James Marquis Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by James Marquis in
Current site
Google Scholar
PubMed
Close
,
Joshua Wurman Center for Severe Weather Research, Boulder, Colorado

Search for other papers by Joshua Wurman in
Current site
Google Scholar
PubMed
Close
,
Karen Kosiba Center for Severe Weather Research, Boulder, Colorado

Search for other papers by Karen Kosiba in
Current site
Google Scholar
PubMed
Close
,
Paul Robinson Center for Severe Weather Research, Boulder, Colorado

Search for other papers by Paul Robinson in
Current site
Google Scholar
PubMed
Close
,
David Dowell NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by David Dowell in
Current site
Google Scholar
PubMed
Close
,
Erik Rasmussen Rasmussen Systems, Mesa, Colorado

Search for other papers by Erik Rasmussen in
Current site
Google Scholar
PubMed
Close
, and
Robert Davies-Jones NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Robert Davies-Jones in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The authors analyze the pretornadic phase (2100–2148 UTC; tornadogenesis began at 2152 UTC) of the Goshen County, Wyoming, supercell of 5 June 2009 intercepted by the second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2). The analysis relies on radar data from the Weather Surveillance Radar-1988 Doppler (WSR-88D) in Cheyenne, Wyoming (KCYS), and a pair of Doppler-on-Wheels (DOW) radars, mobile mesonet observations, and mobile sounding observations.

The storm resembles supercells that have been observed in the past. For example, it develops a couplet of counter-rotating vortices that straddle the hook echo within the rear-flank outflow and are joined by arching vortex lines, with the cyclonic vortex becoming increasingly dominant in the time leading up to tornadogenesis. The outflow in the hook echo region, where sampled, has relatively small virtual potential temperature θυ deficits during this stage of evolution. A few kilometers upstream (north) of the location of maximum vertical vorticity, θυ is no more than 3 K colder than the warmest θυ readings in the inflow of the storm. Forward trajectories originating in the outflow within and around the low-level mesocyclone rise rapidly, implying that the upward-directed perturbation pressure gradient force exceeds the negative buoyancy.

Low-level rotation intensifies in the 2142–2148 UTC period. The intensification is preceded by the formation of a descending reflectivity core (DRC), similar to others that have been documented in some supercells recently. The DRC is associated with a rapid increase in the vertical vorticity and circulation of the low-level mesocyclone.

Emeritus.

Corresponding author address: Dr. Paul Markowski, Department of Meteorology, The Pennsylvania State University, 503 Walker Building, University Park, PA 16802. E-mail: pmarkowski@psu.edu

Abstract

The authors analyze the pretornadic phase (2100–2148 UTC; tornadogenesis began at 2152 UTC) of the Goshen County, Wyoming, supercell of 5 June 2009 intercepted by the second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2). The analysis relies on radar data from the Weather Surveillance Radar-1988 Doppler (WSR-88D) in Cheyenne, Wyoming (KCYS), and a pair of Doppler-on-Wheels (DOW) radars, mobile mesonet observations, and mobile sounding observations.

The storm resembles supercells that have been observed in the past. For example, it develops a couplet of counter-rotating vortices that straddle the hook echo within the rear-flank outflow and are joined by arching vortex lines, with the cyclonic vortex becoming increasingly dominant in the time leading up to tornadogenesis. The outflow in the hook echo region, where sampled, has relatively small virtual potential temperature θυ deficits during this stage of evolution. A few kilometers upstream (north) of the location of maximum vertical vorticity, θυ is no more than 3 K colder than the warmest θυ readings in the inflow of the storm. Forward trajectories originating in the outflow within and around the low-level mesocyclone rise rapidly, implying that the upward-directed perturbation pressure gradient force exceeds the negative buoyancy.

Low-level rotation intensifies in the 2142–2148 UTC period. The intensification is preceded by the formation of a descending reflectivity core (DRC), similar to others that have been documented in some supercells recently. The DRC is associated with a rapid increase in the vertical vorticity and circulation of the low-level mesocyclone.

Emeritus.

Corresponding author address: Dr. Paul Markowski, Department of Meteorology, The Pennsylvania State University, 503 Walker Building, University Park, PA 16802. E-mail: pmarkowski@psu.edu
Save
  • Barnes, S. L., 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor., 3, 396409.

  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 10461053.

  • Brandes, E. A., 1977: Flow in severe thunderstorms observed by dual-Doppler radar. Mon. Wea. Rev., 105, 113120.

  • Brandes, E. A., 1993: Tornadic thunderstorm characteristics determined with Doppler radar. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 143–159.

    • Search Google Scholar
    • Export Citation
  • Byko, Z., P. Markowski, Y. Richardson, J. Wurman, and E. Adlerman, 2009: Descending reflectivity cores in supercell thunderstorms observed by mobile radars and in a high-resolution numerical simulation. Wea. Forecasting, 24, 155186.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 1984: Streamwise vorticity: The origin of updraft rotation in supercell storms. J. Atmos. Sci., 41, 29913006.

  • Davies-Jones, R. P., R. J. Trapp, and H. B. Bluestein, 2001: Tornadoes and tornadic storms. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 167–221.

  • Doviak, R. J., P. S. Ray, R. G. Strauch, and L. J. Miller, 1976: Error estimation in wind fields derived from dual-Doppler radar measurement. J. Appl. Meteor., 15, 868878.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and A. Shapiro, 2003: Stability of an iterative dual-Doppler wind synthesis in Cartesian coordinates. J. Atmos. Oceanic Technol., 20, 15521559.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., Y. Richardson, and J. Wurman, 2002: Observations of the formation of low-level rotation: The 5 June 2001 Sumner County, Kansas tornado. Preprints, 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 12.3. [Available online at http://ams.confex.com/ams/pdfpapers/47335.pdf.]

  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Fiedler, B. H., and R. Rotunno, 1986: A theory for the maximum wind speeds in tornado-like vortices. J. Atmos. Sci., 43, 23282340.

  • Fujiwhara, S., 1931: Short note on the behavior of two vortices. Proc. Phys. Math. Soc. Japan, 13, 106110.

  • Gal-Chen, T., 1978: A method for the initialization of the anelastic equations: Implications for matching models with observations. Mon. Wea. Rev., 106, 587606.

    • Search Google Scholar
    • Export Citation
  • Grzych, M. L., B. D. Lee, and C. A. Finley, 2007: Thermodynamic analysis of supercell rear-flank downdrafts from Project ANSWERS. Mon. Wea. Rev., 135, 240246.

    • Search Google Scholar
    • Export Citation
  • Kennedy, A. D., E. N. Rasmussen, and J. M. Straka, 2007a: A visual observation of the 6 June 2005 descending reflectivity core. Electron. J. Severe Storms Meteor., 2 (6).

    • Search Google Scholar
    • Export Citation
  • Kennedy, A. D., J. M. Straka, and E. N. Rasmussen, 2007b: A statistical study of the association of DRCs with supercells and tornadoes. Wea. Forecasting, 22, 11921199.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. Rotunno, 1983: A study of the tornadic region within a supercell thunderstorm. J. Atmos. Sci., 40, 359377.

  • Knupp, K. R., and W. R. Cotton, 1985: Convective cloud downdraft structure: An interpretive survey. Rev. Space Phys. Geophys., 23, 183215.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., M. DesJardins, and P. J. Kocin, 1983: An interactive Barnes objective map analysis scheme for use with satellite and conventional data. J. Climate Appl. Meteor., 22, 14871503.

    • Search Google Scholar
    • Export Citation
  • Leise, J. A., 1982: A multidimensional scale-telescoped filter and data extension package. NOAA Tech. Memo. ERL WPL-82, 19 pp. [Available from NOAA Office of Oceanic and Atmospheric Research, Silver Spring Metro Center, Bldg 3, Room 11627, Silver Spring, MD 20910.]

  • Lemon, L. R., and C. A. Doswell III, 1979: Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev., 107, 11841197.

    • Search Google Scholar
    • Export Citation
  • Majcen, M., P. Markowski, Y. Richardson, D. Dowell, and J. Wurman, 2008: Multipass objective analyses of Doppler radar data. J. Atmos. Oceanic Technol., 25, 18451858.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. P. Richardson, 2008: The structure and evolution of vortex lines in supercell thunderstorms. Preprints, 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 4.1. [Available online at http://ams.confex.com/ams/24SLS/techprogram/paper_141560.htm.]

  • Markowski, P. M., J. M. Straka, and E. N. Rasmussen, 2002: Direct surface thermodynamic observations within the rear-flank downdrafts of nontornadic and tornadic supercells. Mon. Wea. Rev., 130, 16921721.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., E. N. Rasmussen, J. M. Straka, R. P. Davies-Jones, Y. Richardson, and J. Trapp, 2008: Vortex lines within low-level mesocyclones obtained from pseudo-dual-Doppler radar observations. Mon. Wea. Rev., 136, 35133535.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., M. Majcen, and Y. Richardson, 2010: Near-surface vortex genesis in idealized three-dimensional numerical simulations involving a heat source and a heat sink in a vertically sheared environment. Preprints, 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 15.1. [Available online at http://ams.confex.com/ams/25SLS/techprogram/paper_176112.htm.]

  • Markowski, P. M., M. Majcen, Y. Richardson, J. Marquis, and J. Wurman, 2011: Characteristics of the wind field in three nontornadic low-level mesocyclones observed by the Doppler on Wheels radars. Electron. J. Severe Storms Meteor., 6 (3).

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Coauthors, 2012: The pretornadic phase of the Goshen County, Wyoming, supercell of 5 June 2009 intercepted by VORTEX2. Part II: Intensification of low-level rotation. Mon. Wea. Rev.,140, 2916–2938.

  • Marquis, J., Y. Richardson, J. Wurman, P. Markowski, and D. Dowell, 2008: Mobile radar observations of tornadic supercells with multiple rear-flank gust fronts. Preprints, 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 19.3. [Available online at http://ams.confex.com/ams/24SLS/techprogram/paper_142112.htm.]

  • Marquis, J., Y. Richardson, P. Markowski, D. Dowell, and J. Wurman, 2012: Tornado maintenance investigated with high-resolution dual-Doppler and EnKF analysis. Mon. Wea. Rev., 140, 327.

    • Search Google Scholar
    • Export Citation
  • Okubo, A., 1970: Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep-Sea Res., 17, 445454.

    • Search Google Scholar
    • Export Citation
  • Pauley, P. M., and X. Wu, 1990: The theoretical, discrete, and actual response of the Barnes objective analysis scheme for one- and two-dimensional fields. Mon. Wea. Rev., 118, 11451163.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., J. M. Straka, M. S. Gilmore, and R. Davies-Jones, 2006: A preliminary survey of rear-flank descending reflectivity cores in supercell storms. Wea. Forecasting, 21, 923938.

    • Search Google Scholar
    • Export Citation
  • Ray, P. S., C. L. Ziegler, W. Bumgarner, and R. J. Serafin, 1980: Single- and multiple-Doppler radar observations of tornadic storms. Mon. Wea. Rev., 108, 16071625.

    • Search Google Scholar
    • Export Citation
  • Shabbott, C. J., and P. M. Markowski, 2006: Surface in situ observations within the outflow of forward-flank downdrafts of supercell thunderstorms. Mon. Wea. Rev., 134, 14221441.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., E. N. Rasmussen, and S. E. Fredrickson, 1996: A mobile mesonet for fine-scale meteorological observations. J. Atmos. Oceanic Technol., 13, 921936.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., E. N. Rasmussen, R. P. Davies-Jones, and P. M. Markowski, 2007: An observational and idealized numerical examination of low-level counter-rotating vortices toward the rear flank of supercells. Electron. J. Severe Storms Meteor., 2 (8).

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., and C. A. Doswell, 2000: Radar data objective analysis. J. Atmos. Oceanic Technol., 17, 105120.

  • Wakimoto, R. M., N. T. Atkins, and J. Wurman, 2011: The LaGrange tornado during VORTEX2. Part I: Photogrammetric analysis of the tornado combined with single-Doppler radar data. Mon. Wea. Rev., 139, 22332258.

    • Search Google Scholar
    • Export Citation
  • Waugh, S., and S. E. Fredrickson, 2010: An improved aspirated temperature system for mobile meteorological observations, especially in severe weather. Preprints, 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., P5.2. [Available online at http://ams.confex.com/ams/25SLS/techprogram/paper_176205.htm.]

  • Weiss, C. C., and J. L. Schroeder, 2008: StickNet—A new portable, rapidly deployable, surface observing system. Preprints, 24th Conf. on Interactive Information and Processing Systems, New Orleans, LA, Amer. Meteor. Soc., 4A.1. [Available online at http://ams.confex.com/ams/88Annual/techprogram/paper_134047.htm.]

  • Weiss, J., 1991: The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D, 48, 273294.

  • Wurman, J., J. Straka, E. Rasmussen, M. Randall, and A. Zahrai, 1997: Design and deployment of a portable, pencil-beam, pulsed, 3-cm Doppler radar. J. Atmos. Oceanic Technol., 14, 15021512.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., Y. Richardson, C. Alexander, S. Weygandt, and P. F. Zhang, 2007: Dual-Doppler and single-Doppler analysis of a tornadic storm undergoing mergers and repeated tornadogenesis. Mon. Wea. Rev., 135, 736758.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., K. Kosiba, P. Markowski, Y. Richardson, and D. Dowell, 2010: Finescale single- and dual-Doppler analysis of tornado intensification, maintenance, and dissipation in the Orleans, Nebraska, tornadic supercell. Mon. Wea. Rev., 138, 44394455.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., D. Dowell, Y. Richardson, P. Markowski, E. Rasmussen, D. Burgess, L. Wicker, and H. Bluestein, 2012: The Second Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX2. Bull. Amer. Meteor. Soc., 93, 11471170.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 562 260 12
PDF Downloads 399 198 14