The Pretornadic Phase of the Goshen County, Wyoming, Supercell of 5 June 2009 Intercepted by VORTEX2. Part II: Intensification of Low-Level Rotation

Paul Markowski Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Paul Markowski in
Current site
Google Scholar
PubMed
Close
,
Yvette Richardson Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Yvette Richardson in
Current site
Google Scholar
PubMed
Close
,
James Marquis Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by James Marquis in
Current site
Google Scholar
PubMed
Close
,
Robert Davies-Jones NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Robert Davies-Jones in
Current site
Google Scholar
PubMed
Close
,
Joshua Wurman Center for Severe Weather Research, Boulder, Colorado

Search for other papers by Joshua Wurman in
Current site
Google Scholar
PubMed
Close
,
Karen Kosiba Center for Severe Weather Research, Boulder, Colorado

Search for other papers by Karen Kosiba in
Current site
Google Scholar
PubMed
Close
,
Paul Robinson Center for Severe Weather Research, Boulder, Colorado

Search for other papers by Paul Robinson in
Current site
Google Scholar
PubMed
Close
,
Erik Rasmussen Rasmussen Systems, Mesa, Colorado

Search for other papers by Erik Rasmussen in
Current site
Google Scholar
PubMed
Close
, and
David Dowell NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by David Dowell in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The dynamical processes responsible for the intensification of low-level rotation prior to tornadogenesis are investigated in the Goshen County, Wyoming, supercell of 5 June 2009 intercepted by the second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2). The circulation of material circuits that converge upon the low-level mesocyclone is principally acquired along the southern periphery of the forward-flank precipitation region, which is a corridor characterized by a horizontal buoyancy gradient; thus, much of the circulation appears to have been baroclinically generated. The descending reflectivity core (DRC) documented in Part I of this paper has an important modulating influence on the circulation of the material circuits. A circuit that converges upon the low-level mesocyclone center prior to the DRC’s arrival at low levels (approximately the arrival of the 55-dBZ reflectivity isosurface in this case) loses some of its previously acquired circulation during the final few minutes of its approach. In contrast, a circuit that approaches the low-level mesocyclone center after the DRC arrives at low levels does not experience the same adversity.

An analysis of the evolution of angular momentum within a circular control disk centered on the low-level mesocyclone reveals that the area-averaged angular momentum in the nearby surroundings of the low-level mesocyclone increases while the mesocyclone is occluding and warm-sector air is being displaced from the near surroundings. The occlusion process reduces the overall negative vertical flux of angular momentum into the control disk and enables the area-averaged angular momentum to continue increasing even though the positive radial influx of angular momentum is decreasing in time.

Emeritus.

Corresponding author address: Dr. Paul Markowski, Department of Meteorology, The Pennsylvania State University, 503 Walker Building, University Park, PA 16802. E-mail: pmarkowski@psu.edu

Abstract

The dynamical processes responsible for the intensification of low-level rotation prior to tornadogenesis are investigated in the Goshen County, Wyoming, supercell of 5 June 2009 intercepted by the second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2). The circulation of material circuits that converge upon the low-level mesocyclone is principally acquired along the southern periphery of the forward-flank precipitation region, which is a corridor characterized by a horizontal buoyancy gradient; thus, much of the circulation appears to have been baroclinically generated. The descending reflectivity core (DRC) documented in Part I of this paper has an important modulating influence on the circulation of the material circuits. A circuit that converges upon the low-level mesocyclone center prior to the DRC’s arrival at low levels (approximately the arrival of the 55-dBZ reflectivity isosurface in this case) loses some of its previously acquired circulation during the final few minutes of its approach. In contrast, a circuit that approaches the low-level mesocyclone center after the DRC arrives at low levels does not experience the same adversity.

An analysis of the evolution of angular momentum within a circular control disk centered on the low-level mesocyclone reveals that the area-averaged angular momentum in the nearby surroundings of the low-level mesocyclone increases while the mesocyclone is occluding and warm-sector air is being displaced from the near surroundings. The occlusion process reduces the overall negative vertical flux of angular momentum into the control disk and enables the area-averaged angular momentum to continue increasing even though the positive radial influx of angular momentum is decreasing in time.

Emeritus.

Corresponding author address: Dr. Paul Markowski, Department of Meteorology, The Pennsylvania State University, 503 Walker Building, University Park, PA 16802. E-mail: pmarkowski@psu.edu
Save
  • Adlerman, E. J., K. K. Droegemeier, and R. P. Davies-Jones, 1999: A numerical simulation of cyclic mesocyclogenesis. J. Atmos. Sci., 56, 20452069.

    • Search Google Scholar
    • Export Citation
  • Byko, Z., P. Markowski, Y. Richardson, J. Wurman, and E. Adlerman, 2009: Descending reflectivity cores in supercell thunderstorms observed by mobile radars and in a high-resolution numerical simulation. Wea. Forecasting, 24, 155186.

    • Search Google Scholar
    • Export Citation
  • Craven, J. P., and H. E. Brooks, 2004: Baseline climatology of sounding derived parameters associated with deep, moist convection. Natl. Wea. Dig., 28, 1324.

    • Search Google Scholar
    • Export Citation
  • Dahl, J. M. L., M. D. Parker, and L. J. Wicker, 2011: On the development of large surface vorticity in high-resolution supercell simulations. Preprints, 14th Conf. on Mesoscale Processes, Los Angeles, CA, Amer. Meteor. Soc., 7.4. [Available online at https://ams.confex.com/ams/14Meso15ARAM/webprogram/Paper191179.html.]

  • Davies-Jones, R. P., 1982a: A new look at the vorticity equation with application to tornadogenesis. Preprints, 12th Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 249–252.

  • Davies-Jones, R. P., 1982b: Observational and theoretical aspects of tornadogenesis. Intense Atmospheric Vortices. L. Bengtsson and J. Lighthill, Eds., Springer-Verlag, 175–189.

  • Davies-Jones, R. P., 1984: Streamwise vorticity: The origin of updraft rotation in supercell storms. J. Atmos. Sci., 41, 29913006.

  • Davies-Jones, R. P., 2000: A Lagrangian model for baroclinic genesis of mesoscale vortices. Part I: Theory. J. Atmos. Sci., 57, 715736.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 2008: Can a descending rain curtain in a supercell instigate tornadogenesis barotropically? J. Atmos. Sci., 65, 24692497.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., and H. E. Brooks, 1993: Mesocyclogenesis from a theoretical perspective. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 105–114.

  • Davies-Jones, R. P., R. J. Trapp, and H. B. Bluestein, 2001: Tornadoes and tornadic storms. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 167–221.

  • Doswell, C. A., III, and D. W. Burgess, 1993: Tornadoes and tornadic storms: A review of conceptual models. The Tornado: Its Structure, Dynamics, Prediction, and Hazards,Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 161–172.

  • Doswell, C. A., III, and J. S. Evans, 2003: Proximity sounding analysis for derechos and supercells: An assessment of similarities and differences. Atmos. Res., 67–68, 117133.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and H. B. Bluestein, 1997: The Arcadia, Oklahoma, storm of 17 May 1981: Analysis of a supercell during tornadogenesis. Mon. Wea. Rev., 125, 25622582.

    • Search Google Scholar
    • Export Citation
  • Gal-Chen, T., 1978: A method for the initialization of the anelastic equations: Implications for matching models with observations. Mon. Wea. Rev., 106, 587606.

    • Search Google Scholar
    • Export Citation
  • Grzych, M. L., B. D. Lee, and C. A. Finley, 2007: Thermodynamic analysis of supercell rear-flank downdrafts from Project ANSWERS. Mon. Wea. Rev., 135, 240246.

    • Search Google Scholar
    • Export Citation
  • Hane, C. E., and P. S. Ray, 1985: Pressure and buoyancy fields derived from Doppler radar data in a tornadic thunderstorm. J. Atmos. Sci., 42, 1835.

    • Search Google Scholar
    • Export Citation
  • Hirth, B. D., J. L. Schroeder, and C. C. Weiss, 2008: Surface analysis of the rear-flank downdraft outflow in two tornadic supercells. Mon. Wea. Rev., 136, 23442363.

    • Search Google Scholar
    • Export Citation
  • Kennedy, A. D., E. N. Rasmussen, and J. M. Straka, 2007a: A visual observation of the 6 June 2005 descending reflectivity core. Electron. J. Severe Storms Meteor., 2 (6).

    • Search Google Scholar
    • Export Citation
  • Kennedy, A. D., J. M. Straka, and E. N. Rasmussen, 2007b: A statistical study of the association of DRCs with supercells and tornadoes. Wea. Forecasting, 22, 11921199.

    • Search Google Scholar
    • Export Citation
  • Kis, A. K., J. M. Straka, and K. M. Kanak, 2008: On the role of descending rain curtains in tornadogenesis. Preprints, 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 14.1. [Available online at https://ams.confex.com/ams/24SLS/techprogram/paper_142115.htm.]

  • Klemp, J. B., and R. Rotunno, 1983: A study of the tornadic region within a supercell thunderstorm. J. Atmos. Sci., 40, 359377.

  • Lemon, L. R., and C. A. Doswell III, 1979: Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev., 107, 11841197.

    • Search Google Scholar
    • Export Citation
  • Lewellen, D. C., and W. S. Lewellen, 2007: Near-surface intensification of tornado vortices. J. Atmos. Sci., 64, 21762194.

  • Lewellen, W. S., D. C. Lewellen, and R. I. Sykes, 1997: Large-eddy simulation of a tornado’s interaction with the surface. J. Atmos. Sci., 54, 581605.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1982: The development and maintenance of rotation in convective storms. Intense Atmospheric Vortices, L. Bengtsson and J. Lighthill, Eds., Springer-Verlag, 149–160.

  • Majcen, M., P. Markowski, Y. Richardson, D. Dowell, and J. Wurman, 2008: Multipass objective analyses of radar data. J. Atmos. Oceanic Technol., 25, 18451858.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., J. M. Straka, and E. N. Rasmussen, 2002: Direct surface thermodynamic observations within the rear-flank downdrafts of nontornadic and tornadic supercells. Mon. Wea. Rev., 130, 16921721.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., C. Hannon, J. Frame, E. Lancaster, A. Pietrycha, R. Edwards, and R. Thompson, 2003: Characteristics of vertical wind profiles near supercells obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12621272.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., E. N. Rasmussen, J. M. Straka, R. P. Davies-Jones, Y. Richardson, and J. Trapp, 2008: Vortex lines within low-level mesocyclones obtained from pseudo-dual-Doppler radar observations. Mon. Wea. Rev., 136, 35133535.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., M. Majcen, and Y. P. Richardson, 2010: Near-surface vortexgenesis in idealized three-dimensional numerical simulations involving a heat source and a heat sink in a vertically sheared environment. Preprints, 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 15.1. [Available online at http://ams.confex.com/ams/25SLS/techprogram/paper_176112.htm.]

  • Markowski, P. M., M. Majcen, Y. P. Richardson, J. Marquis, and J. Wurman, 2011: Characteristics of the wind field in three nontornadic low-level mesocyclones observed by the Doppler on Wheels radars. Electron. J. Severe Storms Meteor., 6 (3).

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Coauthors, 2012: The pretornadic phase of the Goshen County, Wyoming, supercell of 5 June 2009 intercepted by VORTEX2. Part I: Evolution of kinematic and surface thermodynamic fields. Mon. Wea. Rev., 140, 28872915.

    • Search Google Scholar
    • Export Citation
  • Marquis, J., Y. Richardson, P. Markowski, D. Dowell, and J. Wurman, 2012: Tornado maintenance investigated with high-resolution dual-Doppler and EnKF analysis. Mon. Wea. Rev., 140, 327.

    • Search Google Scholar
    • Export Citation
  • Mashiko, W., H. Niino, and T. Kato, 2009: Numerical simulation of tornadogenesis in an outer-rainband minisupercell of Typhoon Shanshan on 17 September 2006. Mon. Wea. Rev., 137, 42384260.

    • Search Google Scholar
    • Export Citation
  • Nowotarski, C. J., P. M. Markowski, and Y. P. Richardson, 2011: The characteristics of numerically simulated supercell storms situated over statically stable boundary layers. Mon. Wea. Rev., 139, 31393162.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., 2003: Refined supercell and tornado forecast parameters. Wea. Forecasting, 18, 530535.

  • Rasmussen, E. N., J. M. Straka, M. S. Gilmore, and R. Davies-Jones, 2006: A preliminary survey of rear-flank descending reflectivity cores in supercell storms. Wea. Forecasting, 21, 923938.

    • Search Google Scholar
    • Export Citation
  • Ray, P. S., C. L. Ziegler, W. Bumgarner, and R. J. Serafin, 1980: Single- and multiple-Doppler radar observations of tornadic storms. Mon. Wea. Rev., 108, 16071625.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., 1981: On the evolution of thunderstorm rotation. Mon. Wea. Rev., 109, 577586.

  • Rotunno, R., and J. B. Klemp, 1985: On the rotation and propagation of simulated supercell thunderstorms. J. Atmos. Sci., 42, 271292.

    • Search Google Scholar
    • Export Citation
  • Shabbott, C. J., and P. M. Markowski, 2006: Surface in situ observations within the outflow of forward-flank downdrafts of supercell thunderstorms. Mon. Wea. Rev., 134, 14221441.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., E. N. Rasmussen, R. P. Davies-Jones, and P. M. Markowski, 2007: An observational and idealized numerical examination of low-level counter-rotating vortices toward the rear flank of supercells. Electron. J. Severe Storms Meteor., 2 (8).

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. M. Markowski, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12431261.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., and B. H. Fiedler, 1995: Tornado-like vortexgenesis in a simplified numerical model. J. Atmos. Sci., 52, 37573778.

  • Trapp, R. J., G. J. Stumpf, and K. L. Manross, 2005: A reassessment of the percentage of tornadic mesocyclones. Wea. Forecasting, 20, 680687.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., H. Cai, and H. V. Murphey, 2004: The Superior, Nebraska, supercell during BAMEX. Bull. Amer. Meteor. Soc., 85, 10951106.

    • Search Google Scholar
    • Export Citation
  • Walko, R. L., 1993: Tornado spin-up beneath a convective cell: Required basic structure of the near-field boundary layer winds. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 89–95.

  • Wicker, L. J., 1996: The role of near surface wind shear on low-level mesocyclone generation and tornadoes. Preprints, 18th Conf. on Severe Local Storms, San Francisco, CA, Amer. Meteor. Soc., 115–119.

  • Wurman, J., D. Dowell, Y. Richardson, P. Markowski, E. Rasmussen, D. Burgess, L. Wicker, and H. Bluestein, 2012: The Second Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX2. Bull. Amer. Meteor. Soc., 93, 11471170.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 576 203 15
PDF Downloads 424 158 14