Local and Mesoscale Impacts of Wind Farms as Parameterized in a Mesoscale NWP Model

Anna C. Fitch * Geophysical Institute, University of Bergen, and Uni Research, Bergen, Norway, and Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Anna C. Fitch in
Current site
Google Scholar
PubMed
Close
,
Joseph B. Olson NOAA/Earth System Research Laboratory, and Cooperative Institute for Research in Environmental Sciences, Boulder, Colorado

Search for other papers by Joseph B. Olson in
Current site
Google Scholar
PubMed
Close
,
Julie K. Lundquist Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, and National Renewable Energy Laboratory, Golden, Colorado

Search for other papers by Julie K. Lundquist in
Current site
Google Scholar
PubMed
Close
,
Jimy Dudhia Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Jimy Dudhia in
Current site
Google Scholar
PubMed
Close
,
Alok K. Gupta Uni Research, Bergen, Norway

Search for other papers by Alok K. Gupta in
Current site
Google Scholar
PubMed
Close
,
John Michalakes ** National Renewable Energy Laboratory, Golden, Colorado

Search for other papers by John Michalakes in
Current site
Google Scholar
PubMed
Close
, and
Idar Barstad Uni Research, Bergen, Norway

Search for other papers by Idar Barstad in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A new wind farm parameterization has been developed for the mesoscale numerical weather prediction model, the Weather Research and Forecasting model (WRF). The effects of wind turbines are represented by imposing a momentum sink on the mean flow; transferring kinetic energy into electricity and turbulent kinetic energy (TKE). The parameterization improves upon previous models, basing the atmospheric drag of turbines on the thrust coefficient of a modern commercial turbine. In addition, the source of TKE varies with wind speed, reflecting the amount of energy extracted from the atmosphere by the turbines that does not produce electrical energy.

Analyses of idealized simulations of a large offshore wind farm are presented to highlight the perturbation induced by the wind farm and its interaction with the atmospheric boundary layer (BL). A wind speed deficit extended throughout the depth of the neutral boundary layer, above and downstream from the farm, with a long wake of 60-km e-folding distance. Within the farm the wind speed deficit reached a maximum reduction of 16%. A maximum increase of TKE, by nearly a factor of 7, was located within the farm. The increase in TKE extended to the top of the BL above the farm due to vertical transport and wind shear, significantly enhancing turbulent momentum fluxes. The TKE increased by a factor of 2 near the surface within the farm. Near-surface winds accelerated by up to 11%. These results are consistent with the few results available from observations and large-eddy simulations, indicating this parameterization provides a reasonable means of exploring potential downwind impacts of large wind farms.

Corresponding author address: Anna C. Fitch, Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: anna.fitch@gfi.uib.no

Abstract

A new wind farm parameterization has been developed for the mesoscale numerical weather prediction model, the Weather Research and Forecasting model (WRF). The effects of wind turbines are represented by imposing a momentum sink on the mean flow; transferring kinetic energy into electricity and turbulent kinetic energy (TKE). The parameterization improves upon previous models, basing the atmospheric drag of turbines on the thrust coefficient of a modern commercial turbine. In addition, the source of TKE varies with wind speed, reflecting the amount of energy extracted from the atmosphere by the turbines that does not produce electrical energy.

Analyses of idealized simulations of a large offshore wind farm are presented to highlight the perturbation induced by the wind farm and its interaction with the atmospheric boundary layer (BL). A wind speed deficit extended throughout the depth of the neutral boundary layer, above and downstream from the farm, with a long wake of 60-km e-folding distance. Within the farm the wind speed deficit reached a maximum reduction of 16%. A maximum increase of TKE, by nearly a factor of 7, was located within the farm. The increase in TKE extended to the top of the BL above the farm due to vertical transport and wind shear, significantly enhancing turbulent momentum fluxes. The TKE increased by a factor of 2 near the surface within the farm. Near-surface winds accelerated by up to 11%. These results are consistent with the few results available from observations and large-eddy simulations, indicating this parameterization provides a reasonable means of exploring potential downwind impacts of large wind farms.

Corresponding author address: Anna C. Fitch, Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: anna.fitch@gfi.uib.no
Save
  • Adams, A. S., and D. W. Keith, 2007: Wind energy and climate: modeling the atmospheric impacts of wind energy turbines. Eos, Trans. Amer. Geophys. Union,88 (Fall Meeting Suppl.), Abstract B44B-08.

  • Baidya Roy, S., 2011: Simulating impacts of wind farms on local hydrometeorology. J. Wind Eng. Ind. Aerodyn., 99, 491498, doi:10.1016/j.jweia.2010.12.013.

    • Search Google Scholar
    • Export Citation
  • Baidya Roy, S., and J. J. Traiteur, 2010: Impacts of wind farms on surface air temperatures. Proc. Natl. Acad. Sci. USA, 107, 17 89917 904, doi:10.1073/pnas.1000493107.

    • Search Google Scholar
    • Export Citation
  • Baidya Roy, S., S. W. Pacala, and R. L. Walko, 2004: Can large wind farms affect local meteorology? J. Geophys. Res., 109, D19101, doi:10.1029/2004JD004763.

    • Search Google Scholar
    • Export Citation
  • Barrie, D. B., and D. B. Kirk-Davidoff, 2010: Weather response to a large wind turbine array. Atmos. Chem. Phys., 10, 769775, doi:10.5194/acp-10-769-2010.

    • Search Google Scholar
    • Export Citation
  • Barthelmie, R. J., and Coauthors, 2007: Modelling and measurements of wakes in large wind farms. J. Phys.: Conf. Ser., 75, 012049, doi:10.1088/1742-6596/75/1/012049.

    • Search Google Scholar
    • Export Citation
  • Barthelmie, R. J., and Coauthors, 2010: Quantifying the impact of wind turbine wakes on power output at offshore wind farms. J. Atmos. Oceanic Technol., 27, 13021317.

    • Search Google Scholar
    • Export Citation
  • Blahak, U., B. Goretzki, and J. Meis, 2010: A simple parameterization of drag forces induced by large wind farms for numerical weather prediction models. Proc. European Wind Energy Conf. and Exhibition 2010, PO ID 445, Warsaw, Poland, EWEC, 186–189. [Available online at http://www.ewec2010proceedings.info/posters/PO.445_EWEC2010presentation.pdf.]

  • Cal, R. B., J. Lebrón, L. Castillo, H. S. Kang, and C. Meneveau, 2011: Experimental study of the horizontally averaged flow structure in a model wind-turbine array boundary layer. J. Renewable Sustainable Energy, 2, 013106, doi:10.1063/1.3289735.

    • Search Google Scholar
    • Export Citation
  • Calaf, M., C. Meneveau, and J. Meyers, 2010: Large eddy simulation study of fully developed wind-turbine array boundary layers. Phys. Fluids, 22, 015110, doi:10.1063/1.3291077.

    • Search Google Scholar
    • Export Citation
  • Chamorro, L. P., and F. Porté-Agel, 2009: A wind-tunnel investigation of wind-turbine wakes: Boundary-layer turbulence effects. Bound.-Layer Meteor., 132, 129149, doi:10.1007/s10546-009-9380-8.

    • Search Google Scholar
    • Export Citation
  • Charnock, H., 1955: Wind stress on a water surface. Quart. J. Roy. Meteor. Soc., 81, 639640, doi:10.1002/qj.49708135027.

  • Christiansen, M. B., and C. B. Hasager, 2005: Wake effects of large offshore wind farms identified from satellite SAR. Remote Sens. Environ., 98, 251268, doi:10.1016/j.rse.2005.07.009.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 2011: WRF version 3.3: New features and updates. Proc. 12th Annual WRF Users’ Workshop, Boulder, CO, NCAR, 1.1.

  • Ivanova, L. A., and E. D. Nadyozhina, 2000: Numerical simulation of wind farm influence on wind flow. Wind Eng., 24, 257269, doi:10.1260/0309524001495620.

    • Search Google Scholar
    • Export Citation
  • Keith, D., J. DeCarolis, D. Denkenberger, D. Lenschow, S. Malyshev, S. Pacala, and P. J. Rasch, 2004: The influence of large-scale wind power on global climate. Proc. Natl. Acad. Sci. USA, 101, 16 11516 120, doi:10.1073/pnas.0406930101.

    • Search Google Scholar
    • Export Citation
  • Kirk-Davidoff, D. B., and D. W. Keith, 2008: On the climate impact of surface roughness anomalies. J. Atmos. Sci., 65, 22152234.

  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 10701096.

    • Search Google Scholar
    • Export Citation
  • Lu, H., and F. Porté-Agel, 2011: Large-eddy simulation of a very large wind farm in a stable atmospheric boundary layer. Phys. Fluids, 23, 065101, doi:10.1063/1.3589857.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31, 17911806.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2009: Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteor. Soc. Japan, 87, 895912, doi:10.2151/jmsj.87.895.

    • Search Google Scholar
    • Export Citation
  • Porté-Agel, F., Y.-T. Wu, H. Lu, and R. J. Conzemius, 2011: Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms. J. Wind Eng. Ind. Aerodyn., 99, 154168, doi:10.1016/j.jweia.2011.01.011.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the advanced research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 125 pp.

  • Smith, S. D., 1988: Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J. Geophys. Res., 93 (C12), 15 46715 472.

    • Search Google Scholar
    • Export Citation
  • Wang, C., and R. G. Prinn, 2010: Potential climatic impacts and reliability of very large-scale wind farms. Atmos. Chem. Phys., 10, 20532061, doi:10.5194/acp-10-2053-2010.

    • Search Google Scholar
    • Export Citation
  • Wang, C., and R. G. Prinn, 2011: Potential climatic impacts and reliability of large-scale offshore wind farms. Environ. Res. Lett., 6, 025101, doi:10.1088/1748-9326/6/2/025101.

    • Search Google Scholar
    • Export Citation
  • Wu, Y.-T., and F. Porté-Agel, 2011: Large-eddy simulation of wind-turbine wakes: Evaluation of turbine parametrisations. Bound.-Layer Meteor., 138, 345366, doi:10.1007/s10546-010-9569-x.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3050 1129 132
PDF Downloads 2560 965 97