The Role of Vortex and Environment Errors in Genesis Forecasts of Hurricanes Danielle and Karl (2010)

Ryan D. Torn Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Ryan D. Torn in
Current site
Google Scholar
PubMed
Close
and
David Cook Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by David Cook in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An ensemble of Weather Research and Forecasting Model (WRF) forecasts initialized from a cycling ensemble Kalman filter (EnKF) system is used to evaluate the sensitivity of Hurricanes Danielle and Karl’s (2010) genesis forecasts to vortex and environmental initial conditions via ensemble sensitivity analysis. Both the Danielle and Karl forecasts are sensitive to the 0-h circulation associated with the pregenesis system over a deep layer and to the temperature and water vapor mixing ratio within the vortex over a comparatively shallow layer. Empirical orthogonal functions (EOFs) of the 0-h ensemble kinematic and thermodynamic fields within the vortex indicate that the 0-h circulation and moisture fields covary with one another, such that a stronger vortex is associated with higher moisture through the column. Forecasts of the pregenesis system intensity are only sensitive to the leading mode of variability in the vortex fields, suggesting that only specific initial condition perturbations associated with the vortex will amplify with time. Multivariate regressions of the vortex EOFs and environmental parameters believed to impact genesis suggest that the Karl forecast is most sensitive to the vortex structure, with smaller sensitivity to the upwind integrated water vapor and 200–850-hPa vertical wind shear magnitude. By contrast, the Danielle forecast is most sensitive to the vortex structure during the first 24 h, but is more sensitive to the 200-hPa divergence and vertical wind shear magnitude at longer forecast hours.

Corresponding author address: Ryan Torn, University at Albany, State University of New York, ES 351, 1400 Washington Ave., Albany, NY 12222. E-mail: rtorn@albany.edu

Abstract

An ensemble of Weather Research and Forecasting Model (WRF) forecasts initialized from a cycling ensemble Kalman filter (EnKF) system is used to evaluate the sensitivity of Hurricanes Danielle and Karl’s (2010) genesis forecasts to vortex and environmental initial conditions via ensemble sensitivity analysis. Both the Danielle and Karl forecasts are sensitive to the 0-h circulation associated with the pregenesis system over a deep layer and to the temperature and water vapor mixing ratio within the vortex over a comparatively shallow layer. Empirical orthogonal functions (EOFs) of the 0-h ensemble kinematic and thermodynamic fields within the vortex indicate that the 0-h circulation and moisture fields covary with one another, such that a stronger vortex is associated with higher moisture through the column. Forecasts of the pregenesis system intensity are only sensitive to the leading mode of variability in the vortex fields, suggesting that only specific initial condition perturbations associated with the vortex will amplify with time. Multivariate regressions of the vortex EOFs and environmental parameters believed to impact genesis suggest that the Karl forecast is most sensitive to the vortex structure, with smaller sensitivity to the upwind integrated water vapor and 200–850-hPa vertical wind shear magnitude. By contrast, the Danielle forecast is most sensitive to the vortex structure during the first 24 h, but is more sensitive to the 200-hPa divergence and vertical wind shear magnitude at longer forecast hours.

Corresponding author address: Ryan Torn, University at Albany, State University of New York, ES 351, 1400 Washington Ave., Albany, NY 12222. E-mail: rtorn@albany.edu
Save
  • Ancell, B., and G. J. Hakim, 2007: Comparing adjoint and ensemble sensitivity analysis with applications to observation targeting. Mon. Wea. Rev., 135, 41174134.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903.

  • Anderson, J. L., 2009: Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus, 61A, 7283.

  • Anderson, J. L., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. Arellano, 2009: The Data Assimilation Research Testbed: A community data assimilation facility. Bull. Amer. Meteor. Soc., 90, 12831296.

    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., and Coauthors, 2008: The COSMIC/FORMOSAT-3 Mission: Early results. Bull. Amer. Meteor. Soc., 89, 313333.

  • Barker, D. M., W. Huang, Y. R. Guo, A. J. Bourgeois, and Q. N. Xiao, 2004: A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Wea. Rev., 132, 897914.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., I. Ginis, R. Tuleya, B. Thomas, and T. Marchok, 2007: The operational GFDL coupled hurricane–ocean prediction system and a summary of its performance. Mon. Wea. Rev., 135, 39653989.

    • Search Google Scholar
    • Export Citation
  • Cheung, K. K. W., and R. L. Elsberry, 2002: Tropical cyclone formations over the western North Pacific in the Navy Operational Global Atmospheric Prediction System forecasts. Wea. Forecasting, 17, 800820.

    • Search Google Scholar
    • Export Citation
  • Davis, C., and D. A. Ahijevych, 2012: Mesoscale structural evolution of three tropical weather systems observed during PREDICT. J. Atmos. Sci., 69, 1284–1305.

    • Search Google Scholar
    • Export Citation
  • Davis, C., W. Wang, J. Dudhia, and R. Torn, 2010: Does increased horizontal resolution improve hurricane wind forecasts. Wea. Forecasting, 25, 18261841.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 2009: A simplified dynamical system for tropical cyclone intensity prediction. Mon. Wea. Rev., 137, 6882.

  • DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvements in the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531543.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., M. T. Montgomery, and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys., 9, 55875646.

    • Search Google Scholar
    • Export Citation
  • Fang, J., and F. Zhang, 2010: Initial development and genesis of Hurricane Dolly (2008). J. Atmos. Sci., 67, 655672.

  • Fang, J., and F. Zhang, 2011: Evolution of multiscale vorticies in the development of Hurricane Dolly (2008). J. Atmos. Sci., 68, 103122.

    • Search Google Scholar
    • Export Citation
  • Fritz, C., and Z. Wang, 2013: A numerical study of the impacts of dry air on tropical cyclone formation: A development case and a nondevelopment case. J. Atmos. Sci., in press.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757.

    • Search Google Scholar
    • Export Citation
  • Gombos, D., R. N. Hoffman, and J. A. Hansen, 2012: Ensemble statistics for diagnosing dynamics: Tropical cyclone track forecast sensitivities revealed by ensemble regression. Mon. Wea. Rev., 140, 2647–2669.

    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S., Q. Liu, T. Marchok, D. Sheinin, N. Surgi, R. Tuleya, R. Yablonsky, and Z. Zhang, 2010: Hurricane Weather Research and Forecasting (HWRF) Model scientific documentation. Tech. Rep., NOAA/Earth System Research Laboratory, Boulder, CO, 75 pp.

  • Gray, W. M., 1998: The formation of tropical cyclones. Meteor. Atmos. Phys., 67, 3769.

  • Hakim, G. J., and R. D. Torn, 2008: Ensemble synoptic analysis. Synoptic–Dynamic Meteorology and Weather Analysis and Forecasting: A Tribute to Fred Sanders, Meteor. Monogr., No. 55, Amer. Meteor. Soc., 147–161.

  • Hamill, T. M., J. S. Whitaker, M. Fiorino, and S. J. Benjamin, 2011: Global ensemble predictions of 2009’s tropical cyclones initialized with an ensemble Kalman filter. Mon. Wea. Rev., 139, 668688.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. T. Montgomery, and C. A. Davis, 2004: One the role of “vortical” hot towers in tropical cyclone formation. J. Atmos. Sci., 61, 12091232.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., J. Dudhia, and S. H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802.

    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and Coauthors, 2010: Enhancements to the operational SHIPS Rapid Intensification Index. Preprints, 29th Conf. on Hurricanes and Tropical Meteorology, Tucson, AZ, Amer. Meteor. Soc., 9C.4. [Available online at https://ams.confex.com/ams/pdfpapers/167825.pdf.]

  • Kimberlain, T. B., 2010: Tropical cyclone report Hurricane Danielle (AL062010) 21–30 August 2010. Tech. Rep., National Hurricane Center, 16 pp. [Available online at http://www.nhc.noaa.gov/pdf/TCR-AL062010_Danielle.pdf.]

  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 (D14), 16 66316 682.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. E. Nicholls, T. A. Cram, and M. E. Saunders, 2006: A “vortical” hot tower pathway to tropical cyclogenesis. J. Atmos. Sci., 63, 355386.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and Coauthors, 2012: The Pre-Depression Investigation of Cloud Systems in the Tropics (PREDICT) experiment: Scientific basis, new analysis tools, and some first results. Bull. Amer. Meteor. Soc., 93, 153–172.

    • Search Google Scholar
    • Export Citation
  • Nolan, D., 2007: What is the trigger for tropical cyclogenesis? Aust. Meteor. Mag., 56, 241266.

  • Rappaport, E. N., and Coauthors, 2009: Advances and challenges at the National Hurricane Center. Wea. Forecasting, 24, 395419.

  • Rappin, E. D., D. S. Nolan, and K. A. Emanuel, 2010: Thermodynamic control of tropical cyclogenesis in environments of radiative-convective equilibrium with shear. Quart. J. Roy. Meteor. Soc., 136, 19541971.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and C. Lopez-Carrillo, 2010: The vorticity budget of developing typhoon Nuri 2008. Atmos. Chem. Phys., 11, 147163.

  • Reasor, P. D., M. T. Montgomery, and L. F. Bosart, 2005: Mesoscale observations of the genesis of Hurricane Dolly (1996). J. Atmos. Sci., 62, 31513171.

    • Search Google Scholar
    • Export Citation
  • Sippel, J. A., and F. Zhang, 2008: A probabilistic analysis of the dynamics and predictability of tropical cyclogenesis. J. Atmos. Sci., 65, 34403459.

    • Search Google Scholar
    • Export Citation
  • Sippel, J. A., and F. Zhang, 2010: Factors affecting the predictability of Hurricane Humberto (2007). J. Atmos. Sci., 67, 17591778.

  • Sippel, J. A., S. A. Braun, and C.-L. Shie, 2011: Environmental influences on the strength of Tropical Storm Debby (2006). J. Atmos. Sci., 68, 25572581.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF Version 2. Tech. Rep. 468+STR, National Center for Atmospheric Research, Boulder, CO, 88 pp.

  • Smith, R. K., and M. T. Montgomery, 2012: Observations of the convective environment in developing and non-developing tropical disturbances. Quart. J. Roy. Meteor. Soc., in press.

    • Search Google Scholar
    • Export Citation
  • Snyder, A. D., Z. Pu, and Y. Zhu, 2010: Tracking and verification of East Atlantic tropical cyclone genesis in the NCEP global ensemble: Case studies during the NASA African Monsoon Multidisciplinary Analyses. Wea. Forecasting, 25, 13971411.

    • Search Google Scholar
    • Export Citation
  • Stewart, S. R., 2010: Tropical cyclone report Hurricane Karl (AL132010) 14–18 September 2010. Tech. Rep., National Hurricane Center, 17 pp. [Available online at http://www.nhc.noaa.gov/pdf/TCR-AL132010_Karl.pdf.]

  • Tang, B., and K. Emanuel, 2010: Midlevel ventilations constraint on tropical cyclone intensity. J. Atmos. Sci., 67, 18171830.

  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., 2010a: Ensemble-based sensitivity analysis applied to African easterly waves. Wea. Forecasting, 25, 6178.

  • Torn, R. D., 2010b: Performance of a mesoscale ensemble Kalman filter (EnKF) during the NOAA High-Resolution Hurricane Test. Mon. Wea. Rev., 138, 43754392.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and G. J. Hakim, 2008: Ensemble-based sensitivity analysis. Mon. Wea. Rev., 136, 663677.

  • Torn, R. D., and G. J. Hakim, 2009: Initial condition sensitivity of western Pacific extratropical transitions determined using ensemble-based sensitivity analysis. Mon. Wea. Rev., 137, 3388–3406.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and C. Snyder, 2012: Uncertainty of tropical cyclone best-track information. Wea. Forecasting, 27, 715729.

  • Torn, R. D., G. J. Hakim, and C. Snyder, 2006: Boundary conditions for limited-area ensemble Kalman filters. Mon. Wea. Rev., 134, 24902502.

    • Search Google Scholar
    • Export Citation
  • Velden, C., and Coauthors, 2005: Recent innovations in deriving tropospheric winds from meteorological satellites. Bull. Amer. Meteor. Soc., 86, 205223.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., 2012: Thermodynamic aspects of tropical cyclone formation. J. Atmos. Sci., 69, 2433–2451.

  • Wang, Z., M. T. Montgomery, and C. Fritz, 2012: A first look at the structure of the wave pouch during the 2009 PREDICT-GRIP dry runs over the Atlantic. Mon. Wea. Rev., 140, 11441163.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2005: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 648 pp.

  • Zhang, F., and J. A. Sippel, 2009: Effects of moist convection on hurricane predictability. J. Atmos. Sci., 66, 19441961.

  • Zhang, F., and D. Tao, 2013: Effects of vertical wind shear on the predictability of tropical cyclones. J. Atmos. Sci., in press.

  • Zhang, F., C. Snyder, and R. Rotunno, 2003: Effects of moist convection on mesoscale predictability. J. Atmos. Sci., 60, 11731185.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 335 78 5
PDF Downloads 156 51 5