Discontinuous Galerkin Transport on the Spherical Yin–Yang Overset Mesh

David M. Hall Computational and Information Systems Laboratory, National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by David M. Hall in
Current site
Google Scholar
PubMed
Close
and
Ramachandran D. Nair Computational and Information Systems Laboratory, National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Ramachandran D. Nair in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A discontinuous Galerkin (DG) transport scheme is presented that employs the Yin–Yang grid on the sphere. The Yin–Yang grid is a quasi-uniform overset mesh comprising two notched latitude–longitude meshes placed at right angles to each other. Surface fluxes of conserved scalars are obtained at the overset boundaries by interpolation from the interior of the elements on the complimentary grid, using high-order polynomial interpolation intrinsic to the DG technique. A series of standard tests are applied to evaluate its performance, revealing it to be robust and its accuracy to be competitive with other global advection schemes at equivalent resolutions. Under p-type grid refinement, the DG Yin–Yang method exhibits spectral error convergence for smooth initial conditions and third-order geometric convergence for C1 continuous functions. In comparison with finite-volume implementations of the Yin–Yang mesh, the DG implementation is less complex, as it does not require a wide halo region of elements for accurate boundary value interpolation. With respect to DG cubed-sphere implementations, the Yin–Yang grid exhibits similar accuracy and appears to be a viable alternative suitable for global advective transport. A variant called the Yin–Yang polar (YY-P) mesh is also examined and is shown to have properties similar to the original Yin–Yang mesh while performing better on tests with strictly zonal flow.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: David M. Hall, Computational and Information Systems Laboratory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80305. E-mail: halldm2000@gmail.com

Abstract

A discontinuous Galerkin (DG) transport scheme is presented that employs the Yin–Yang grid on the sphere. The Yin–Yang grid is a quasi-uniform overset mesh comprising two notched latitude–longitude meshes placed at right angles to each other. Surface fluxes of conserved scalars are obtained at the overset boundaries by interpolation from the interior of the elements on the complimentary grid, using high-order polynomial interpolation intrinsic to the DG technique. A series of standard tests are applied to evaluate its performance, revealing it to be robust and its accuracy to be competitive with other global advection schemes at equivalent resolutions. Under p-type grid refinement, the DG Yin–Yang method exhibits spectral error convergence for smooth initial conditions and third-order geometric convergence for C1 continuous functions. In comparison with finite-volume implementations of the Yin–Yang mesh, the DG implementation is less complex, as it does not require a wide halo region of elements for accurate boundary value interpolation. With respect to DG cubed-sphere implementations, the Yin–Yang grid exhibits similar accuracy and appears to be a viable alternative suitable for global advective transport. A variant called the Yin–Yang polar (YY-P) mesh is also examined and is shown to have properties similar to the original Yin–Yang mesh while performing better on tests with strictly zonal flow.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: David M. Hall, Computational and Information Systems Laboratory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80305. E-mail: halldm2000@gmail.com
Save
  • Baba, Y., K. Takahashi, T. Sugimura, and K. Goto, 2010: Dynamical core of an atmospheric general circulation model on a Yin–Yang grid. Mon. Wea. Rev., 138, 39884005.

    • Search Google Scholar
    • Export Citation
  • Blaise, S., and A. St-Cyr, 2012: A dynamic hp-adaptive discontinuous Galerkin method for shallow-water flows on the sphere with application to a global tsunami simulation. Mon. Wea. Rev., 140, 978996.

    • Search Google Scholar
    • Export Citation
  • Cockburn, B., and C.-W. Shu, 1989: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: General framework. Math. Comput.,52, 411–435.

  • Cockburn, B., and C.-W. Shu, 2001: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput., 16, 173261, doi:10.1023/A:1012873910884.

    • Search Google Scholar
    • Export Citation
  • Flyer, N., and E. Lehto, 2010: Rotational transport on a sphere: Local node refinement with radial basis functions. J. Comput. Phys., 229, 19541969.

    • Search Google Scholar
    • Export Citation
  • Gassner, G., and D. A. Kopriva, 2011: A comparison of the dispersion and dissipation errors of Gauss and Gauss–Lobatto discontinuous Galerkin spectral element methods. SIAM J. Sci. Comput., 33 (5), 25602579, doi:10.1137/100807211.

    • Search Google Scholar
    • Export Citation
  • Giraldo, F. X., 1997: Lagrange–Galerkin methods on spherical geodesic grids. J. Comput. Phys., 136, 197213, doi:10.1006/jcph.1997.5771.

    • Search Google Scholar
    • Export Citation
  • Giraldo, F. X., J. Hesthaven, and T. Warburton, 2002: Nodal high-order discontinuous Galerkin methods for spherical shallow water equations. J. Comput. Phys., 181, 499525.

    • Search Google Scholar
    • Export Citation
  • Gottlieb, S., C.-W. Shu, and E. Tadmor, 2001: Strong stability-preserving high-order time discretization methods. SIAM Rev., 43 (1), 89112.

    • Search Google Scholar
    • Export Citation
  • Ii, S., and F. Xiao, 2010: A global shallow water model using high order multi-moment constrained finite volume method and icosahedral grid. J. Comput. Phys., 229, 17741796, doi:10.1016/j.jcp.2009.11.008.

    • Search Google Scholar
    • Export Citation
  • Kageyama, A., and T. Sato, 2004: “Yin-Yang grid”: An overset grid in spherical geometry. Geochem. Geophys. Geosyst., 5, Q09005, doi:10.1029/2004GC000734.

    • Search Google Scholar
    • Export Citation
  • Karniadakis, G. E., and S. J. Sherwin, 2005: Spectral/hp Element Methods for Computational Fluid Dynamics. Numerical Mathematics and Scientific Computation Series, Oxford University Press, 657 pp.

  • Kopriva, D., 2009: Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers. Springer, 411 pp.

  • Kopriva, D., and G. Gassner, 2010: On the quadrature and weak form choices in collocation type discontinuous Galerkin spectral element methods. J. Sci. Comput., 44, 136155, doi:10.1007/s10915-010-9372-3.

    • Search Google Scholar
    • Export Citation
  • Levy, M. N., R. D. Nair, and H. M. Tufo, 2007: High-order Galerkin method for scalable global atmospheric models. Comput. Geosci., 33, 10221035.

    • Search Google Scholar
    • Export Citation
  • Li, X., D. Chen, X. Peng, F. Xiao, and X. Chen, 2006: Implementation of the semi-Lagrangian advection scheme on a quasi-uniform overset grid on a sphere. Adv. Atmos. Sci., 23, 792801, doi:10.1007/s00376-006-0792-9.

    • Search Google Scholar
    • Export Citation
  • Li, X., D. Chen, X. Peng, K. Takahashi, and F. Xiao, 2008: A multimoment finite-volume shallow-water model on the Yin–Yang overset spherical grid. Mon. Wea. Rev., 136, 30663086.

    • Search Google Scholar
    • Export Citation
  • Nair, R. D., and C. Jablonowski, 2008: Moving vortices on the sphere: A test case for horizontal advection problems. Mon. Wea. Rev., 136, 699711.

    • Search Google Scholar
    • Export Citation
  • Nair, R. D., S. J. Thomas, and R. D. Loft, 2005: A discontinuous Galerkin transport scheme on the cubed sphere. Mon. Wea. Rev., 133, 814828.

    • Search Google Scholar
    • Export Citation
  • Nair, R. D., M. N. Levy, and P. H. Lauritzen, 2011: Emerging numerical methods for atmospheric modeling. Numerical Techniques for Global Atmospheric Models, P. H. Lauritzen et al., Eds., Lecture Notes in Computational Science and Engineering Series, Vol. 80, Springer, 251–311.

  • Nastase, C., D. Mavriplis, and J. Sitaraman, 2011: An overset unstructured mesh discontinuous Galerkin approach for aerodynamic problems. Proc. 49th Aerospace Sciences Meeting and Exhibit, Orlando, FL, AIAA, 195.

  • Peng, X., F. Xiao, and K. Takahashi, 2006: Conservative constraint for a quasi-uniform overset grid on the sphere. Quart. J. Roy. Meteor. Soc., 132, 979996, doi:10.1256/qj.05.18.

    • Search Google Scholar
    • Export Citation
  • Phillips, N. A., 1959: Numerical integration of the primitive equations on the hemisphere. Mon. Wea. Rev., 87, 333345.

  • Purser, R. J., 2004: The bi-mercator grid as a global framework for numerical weather prediction. Preprints, Workshop on the Solution of Partial Differential Equations on the Sphere, Yokohama, Japan, Frontier Research Center for Global Change, 46.

  • Qaddouri, A., 2011: Nonlinear shallow-water equations on the Yin-Yang grid. Quart. J. Roy. Meteor. Soc., 137, 810818, doi:10.1002/qj.792.

    • Search Google Scholar
    • Export Citation
  • Qaddouri, A., and V. Lee, 2011: The Canadian Global Environmental Multiscale model on the Yin-Yang grid system. Quart. J. Roy. Meteor. Soc., 137, 19131926, doi:10.1002/qj.873.

    • Search Google Scholar
    • Export Citation
  • Qaddouri, A., L. Laayouni, S. Loisel, J. Côté, and M. J. Gander, 2008: Optimized Schwarz methods with an overset grid for the shallow-water equations: Preliminary results. Appl. Numer. Math., 58 (4), 459471, doi:10.1016/j.apnum.2007.01.015.

    • Search Google Scholar
    • Export Citation
  • Rančić, M., R. J. Purser, and F. Mesinger, 1996: A global shallow-water model using an expanded spherical cube: Gnomonic versus conformal coordinates. Quart. J. Roy. Meteor. Soc., 122, 959982, doi:10.1002/qj.49712253209.

    • Search Google Scholar
    • Export Citation
  • Ronchi, C., R. Iacono, and P. S. Paolucci, 1996: The “cubed sphere”: A new method for the solution of partial differential equations in spherical geometry. J. Comput. Phys., 124 (1), 93114, doi:10.1006/jcph.1996.0047.

    • Search Google Scholar
    • Export Citation
  • Sadourny, R., 1972: Conservative finite-difference approximations of the primitive equations on quasi-uniform spherical grids. Mon. Wea. Rev., 100, 136144.

    • Search Google Scholar
    • Export Citation
  • Sadourny, R., A. Arakawa, and Y. Mintz, 1968: Integration of the nondivergent barotropic vorticity equation with an icosahedral-hexagonal grid for the sphere. Mon. Wea. Rev., 96, 351356.

    • Search Google Scholar
    • Export Citation
  • Schwarz, H. A., 1870: Über einen Grenzübergang durch alternierendes Verfahren. Vierteljahrsschr. Naturforsch. Ges. Zuerich, 15, 272286.

    • Search Google Scholar
    • Export Citation
  • Staniforth, A., and J. Thuburn, 2012: Horizontal grids for global weather and climate prediction models: A review. Quart. J. Roy. Meteor. Soc., 138, 126, doi:10.1002/qj.958.

    • Search Google Scholar
    • Export Citation
  • Taylor, M., J. Tribbia, and M. Iskandarani, 1997: The spectral element method for the shallow water equations on the sphere. J. Comput. Phys., 130 (1), 92108, doi:10.1006/jcph.1996.5554.

    • Search Google Scholar
    • Export Citation
  • Thomas, S. J., and R. D. Loft, 2000: Parallel semi-implicit spectral element methods for atmospheric general circulation models. J. Sci. Comput., 15, 499518, doi:10.1023/A:1011188832645.

    • Search Google Scholar
    • Export Citation
  • Toro, E. F., 2009: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. 3rd ed. Springer, 724 pp.

  • Williamson, D. L., 1968: Integration of the barotropic vorticity equation on a spherical geodesic grid. Tellus, 20 (4), 642653, doi:10.1111/j.2153-3490.1968.tb00406.x.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., 2007: The evolution of dynamical cores for global atmospheric models. J. Meteor. Soc. Japan, 85B, 241269.

  • Williamson, D. L., J. B. Drake, J. J. Hack, R. Jakob, and P. N. Swarztrauber, 1992: A standard test set for numerical approximations to the shallow water equations in spherical geometry. J. Comput. Phys., 102, 211224.

    • Search Google Scholar
    • Export Citation
  • Zerroukat, M., and T. Allen, 2012: On the solution of elliptic problems on overset/Yin–Yang grids. Mon. Wea. Rev., 140, 27562767.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 261 69 13
PDF Downloads 180 57 6