• Annamalai, H., , and K. R. Sperber, 2005: Regional heat sources and the active and break phases of boreal summer intraseasonal (30–50 day) variability. J. Atmos. Sci., 62, 27262748.

    • Search Google Scholar
    • Export Citation
  • Barrett, B. S., , and L. M. Leslie, 2009: Links between tropical cyclone activity and the Madden–Julian oscillation phase in the North Atlantic and northeast Pacific basins. Mon. Wea. Rev., 137, 727744.

    • Search Google Scholar
    • Export Citation
  • Belanger, J. I., , J. A. Curry, , and P. J. Webster, 2010: Predictability of North Atlantic tropical cyclone activity at intraseasonal time scales. Mon. Wea. Rev., 138, 43624374.

    • Search Google Scholar
    • Export Citation
  • Bergman, J. W., , H. H. Hendon, , and K. M. Weickmann, 2001: Intraseasonal air–sea interaction and the onset of ENSO. J. Climate, 14, 17021719.

    • Search Google Scholar
    • Export Citation
  • Bessafi, M., , and M. C. Wheeler, 2006: Modulation of south Indian Ocean tropical cyclones by the Madden–Julian oscillation and convectively coupled equatorial waves. Mon. Wea. Rev., 134, 638656.

    • Search Google Scholar
    • Export Citation
  • Carvalho, L., , C. Jones, , and B. Liebmann, 2004: The South Atlantic convergence zone: Intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J. Climate, 17, 88108.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., , and P. E. Roundy, 2006: The role of tropical waves in tropical cyclogenesis. Mon. Wea. Rev., 134, 23972417.

  • Fu, X., , B. Wang, , J.-Y. Lee, , W. Wang, , and L. Gao, 2011: Sensitivity of dynamical intraseasonal prediction skills to different initial conditions. Mon. Wea. Rev., 139, 25722592.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., , R. S. Ajaya Mohan, , P. K. Xavier, , and D. Sengupta, 2003: Clustering of low pressure systems during the Indian summer monsoon by intraseasonal oscillations. Geophys. Res. Lett., 30, 1431, doi:10.1029/2002GL016734.

    • Search Google Scholar
    • Export Citation
  • Gottschalck, J., and Coauthors, 2010: A framework for assessing operational Madden–Julian oscillation forecasts: A CLIVAR MJO working group project. Bull. Amer. Meteor. Soc., 91, 12471258.

    • Search Google Scholar
    • Export Citation
  • Goulet, L., , and J.-P. Duvel, 2000: A new approach to detect and characterize intermittent atmospheric oscillations: Application to the intraseasonal oscillation. J. Atmos. Sci., 57, 23972416.

    • Search Google Scholar
    • Export Citation
  • Hall, J. D., , A. J. Matthews, , and D. J. Karoly, 2001: The modulation of tropical cyclone activity in the Australian region by the Madden–Julian oscillation. Mon. Wea. Rev., 129, 29702982.

    • Search Google Scholar
    • Export Citation
  • Haltiner, G. J., , and R. T. Williams, 1980: Numerical Prediction and Dynamic Meteorology. John Wiley and Sons, 477 pp.

  • Hendon, H. H., 1986: Streamfunction and velocity potential representation of equatorially trapped waves. J. Atmos. Sci., 43, 30383042.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., , and B. Liebmann, 1990: Composite study of onset of the Australian summer monsoon. J. Atmos. Sci., 47, 22272240.

  • Hendon, H. H., , and M. L. Salby, 1994: The life cycle of the Madden–Julian Oscillation. J. Atmos. Sci., 51, 22252237.

  • Higgins, W., , and W. Shi, 2001: Intercomparison of the principal modes of interannual and intraseasonal variability of the North American monsoon system. J. Climate, 14, 403417.

    • Search Google Scholar
    • Export Citation
  • Jones, C., , and L. Carvalho, 2002: Active and break phases in the South American monsoon system. J. Climate, 15, 905914.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kim, J.-H., , C.-H. Ho, , H.-S. Kim, , C.-H. Sui, , and S. K. Park, 2008: Systematic variation of summertime tropical cyclone activity in the western North Pacific in relation to the Madden–Julian oscillation. J. Climate, 21, 11711191.

    • Search Google Scholar
    • Export Citation
  • Kinter, J. L., , M. J. Fennessy, , V. Krishnamurthy, , and L. Marx, 2004: An evaluation of the apparent interdecadal shift in the tropical divergent circulation in the NCEP–NCAR reanalysis. J. Climate, 17, 349361.

    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., 2010: On the Madden–Julian oscillation–Atlantic hurricane relationship. J. Climate, 23, 282293.

  • Lau, W. K. M., 2005: ENSO connections. Intraseasonal Variability of the Atmosphere–Ocean Climate System, W. K. M. Lau and D. E. Waliser, Eds., Springer, 277–308.

  • Lavender, S., , and A. Matthews, 2009: Response of the West African monsoon to the Madden–Julian oscillation. J. Climate, 22, 40974116.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., , and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., , H. H. Hendon, , and J. D. Glick, 1994: The relationship between tropical cyclones of the western Pacific and Indian Oceans and the phase of the MJO. J. Meteor. Soc. Japan, 72, 401412.

    • Search Google Scholar
    • Export Citation
  • Lin, H., , G. Brunet, , and J. Derome, 2008: Forecast skill of the Madden–Julian oscillation in two Canadian atmospheric models. Mon. Wea. Rev., 136, 41304149.

    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., 1984: The evolution of planetary-scale 200 mb divergent flow during the FGGE year. Quart. J. Roy. Meteor. Soc., 110, 427441.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1971: Detection of a 40–50-day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1972: Description of global-scale circulation cells in the Tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123.

    • Search Google Scholar
    • Export Citation
  • Maloney, E., , and D. Hartmann, 2000a: Modulation of eastern North Pacific hurricanes by the Madden–Julian oscillation. J. Climate, 13, 14511460.

    • Search Google Scholar
    • Export Citation
  • Maloney, E., , and D. Hartmann, 2000b: Modulation of hurricane activity in the Gulf of Mexico by the Madden–Julian oscillation. Science, 287, 20022004.

    • Search Google Scholar
    • Export Citation
  • Maloney, E., , and J. Shaman, 2008: Intraseasonal variability of the West African monsoon and Atlantic ITCZ. J. Climate, 21, 28982918.

  • Matthews, A. J., 2004: Intraseasonal variability over tropical Africa during northern summer. J. Climate, 17, 24272440.

  • McPhaden, M. J., 1999: Genesis and evolution of the 1997–98 El Niño. Science, 283, 950954.

  • Milliff, R. F., , and R. A. Madden, 1996: The existence and vertical structure of fast, eastward- moving disturbances in the equatorial troposphere. J. Atmos. Sci., 53, 586597.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., 2000: The association between intraseasonal oscillations and tropical storms in the Atlantic basin. Mon. Wea. Rev., 128, 40974107.

    • Search Google Scholar
    • Export Citation
  • Nakazawa, T., 1986: Intraseasonal variations of OLR in the tropics during the FGGE year. J. Meteor. Soc. Japan, 64, 1734.

  • NCAR Command Language, 2013: NCL Version 6.0.0, UCAR/NCAR/CISL/VETS, doi:10.5065/D6WD3XH5.

  • Newman, M., , P. D. Sardeshmukh, , and J. W. Bergman, 2000: An assessment of the NCEP, NASA, and ECMWF reanalyses over the tropical West Pacific warm pool. Bull. Amer. Meteor. Soc., 81, 4148.

    • Search Google Scholar
    • Export Citation
  • North, G. R., , T. L. Bell, , R. F. Cahalan, , and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., , C. J. Schreck III, , and M. A. Janiga, 2009: Contributions of convectively coupled equatorial Rossby waves and Kelvin waves to the Real-Time Multivariate MJO Indices. Mon. Wea. Rev., 137, 469478.

    • Search Google Scholar
    • Export Citation
  • Schreck, C. J., , and J. Molinari, 2011: Tropical cyclogenesis associated with Kelvin waves and the Madden–Julian oscillation. Mon. Wea. Rev., 139, 27232734.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., , and D. Kim, 2012: The MJO-Kelvin wave transition. Geophys. Res. Lett., 39, L20808, doi:10.1029/2012GL053380.

  • Sperber, K. R., , J. M. Slingo, , and H. Annamalai, 2000: Predictability and the relationship between subseasonal and interannual variability during the Asian summer monsoon. Quart. J. Roy. Meteor. Soc., 126, 25452574.

    • Search Google Scholar
    • Export Citation
  • Straub, K., 2013: MJO initiation in the Realtime Multivariate MJO Index. J. Climate, 26, 11301151.

  • Takayabu, Y. N., , T. Iguchi, , M. Kachi, , A. Shibata, , and H. Kanzawa, 1999: Abrupt termination of the 1997–98 El Niño in response to a Madden–Julian oscillation. Nature, 402, 279282.

    • Search Google Scholar
    • Export Citation
  • Ventrice, M. J., , C. D. Thorncroft, , and P. E. Roundy, 2011: The Madden–Julian Oscillation’s influence on African easterly waves and downstream tropical cyclogenesis. Mon. Wea. Rev., 139, 27042722.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., 2006: Intraseasonal variations. The Asian Monsoon, B. Wang, Ed., Springer, 787 pp.

  • Wheeler, M. C., , and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., , and J. L. McBride, 2005: Australian–Indonesian monsoon. Intraseasonal Variability in the Atmosphere–Ocean Climate System, W. K. M. Lau and D. E. Waliser, Eds., Springer, 125–173.

  • Xue, Y., , W. Higgins, , and V. Kousky, 2002: Influences of the Madden Julian Oscillation on temperature and precipitation in North America during ENSO-neutral and weak ENSO winters. Preprints, Workshop on Prospects for Improved Forecasts of Weather and Short-term Climate Variability on Subseasonal Time Scales, NASA Goddard Space Flight Center, 4 pp. [Available online at http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_mjo_index/CPCmjoindex.pdf.]

  • Zhang, C., 2005: Madden–Julian oscillation. Rev. Geophys., 43, 136.

  • Zhang, C., , and J. Gottschalck, 2002: SST anomalies of ENSO and the Madden–Julian oscillation in the equatorial Pacific. J. Climate, 15, 24292445.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 707 707 57
PDF Downloads 649 649 58

A Modified Multivariate Madden–Julian Oscillation Index Using Velocity Potential

View More View Less
  • 1 Department of Atmospheric and Environmental Science, University at Albany, State University of New York, Albany, New York
  • | 2 Centre for Australian Weather and Climate Research, Bureau of Meteorology, Melbourne, Australia
  • | 3 Cooperative Institute for Climate and Satellites, North Carolina State University, and NOAA/National Climatic Data Center, Asheville, North Carolina
  • | 4 Department of Atmospheric and Environmental Science, University at Albany, State University of New York, Albany, New York
  • | 5 Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A new Madden–Julian oscillation (MJO) index is developed from a combined empirical orthogonal function (EOF) analysis of meridionally averaged 200-hPa velocity potential (VP200), 200-hPa zonal wind (U200), and 850-hPa zonal wind (U850). Like the Wheeler–Hendon Real-time Multivariate MJO (RMM) index, which was developed in the same way except using outgoing longwave radiation (OLR) data instead of VP200, daily data are projected onto the leading pair of EOFs to produce the two-component index. This new index is called the velocity potential MJO (VPM) indices and its properties are quantitatively compared to RMM. Compared to the RMM index, the VPM index detects larger-amplitude MJO-associated signals during boreal summer. This includes a slightly stronger and more coherent modulation of Atlantic tropical cyclones. This result is attributed to the fact that velocity potential preferentially emphasizes the planetary-scale aspects of the divergent circulation, thereby spreading the convectively driven component of the MJO’s signal across the entire globe. VP200 thus deemphasizes the convective signal of the MJO over the Indian Ocean warm pool, where the OLR variability associated with the MJO is concentrated, and enhances the signal over the relatively drier longitudes of the equatorial Pacific and Atlantic. This work provides a useful framework for systematic analysis of the strengths and weaknesses of different MJO indices.

Corresponding author address: Michael Ventrice, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222. E-mail: mventrice@albany.edu

Abstract

A new Madden–Julian oscillation (MJO) index is developed from a combined empirical orthogonal function (EOF) analysis of meridionally averaged 200-hPa velocity potential (VP200), 200-hPa zonal wind (U200), and 850-hPa zonal wind (U850). Like the Wheeler–Hendon Real-time Multivariate MJO (RMM) index, which was developed in the same way except using outgoing longwave radiation (OLR) data instead of VP200, daily data are projected onto the leading pair of EOFs to produce the two-component index. This new index is called the velocity potential MJO (VPM) indices and its properties are quantitatively compared to RMM. Compared to the RMM index, the VPM index detects larger-amplitude MJO-associated signals during boreal summer. This includes a slightly stronger and more coherent modulation of Atlantic tropical cyclones. This result is attributed to the fact that velocity potential preferentially emphasizes the planetary-scale aspects of the divergent circulation, thereby spreading the convectively driven component of the MJO’s signal across the entire globe. VP200 thus deemphasizes the convective signal of the MJO over the Indian Ocean warm pool, where the OLR variability associated with the MJO is concentrated, and enhances the signal over the relatively drier longitudes of the equatorial Pacific and Atlantic. This work provides a useful framework for systematic analysis of the strengths and weaknesses of different MJO indices.

Corresponding author address: Michael Ventrice, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222. E-mail: mventrice@albany.edu
Save