• Ancell, B. C., 2012: Examination of analysis and forecast errors of high-resolution assimilation, bias removal, and digital filter initialization with an ensemble Kalman filter. Mon. Wea. Rev., 140, 39924004.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903.

  • Anderson, J. L., 2003: A local least squares framework for ensemble filtering. Mon. Wea. Rev., 131, 634642.

  • Anderson, J. L., 2009: Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus, 61A, 7283.

  • Anderson, J. L., , T. Hoar, , K. Raeder, , H. Liu, , N. Collins, , R. Torn, , and A. Arellano, 2009: The Data Assimilation Research Testbed: A community facility. Bull. Amer. Meteor. Soc., 90, 12831296.

    • Search Google Scholar
    • Export Citation
  • Barker, D. M., , W. Huang, , Y.-R. Guo, , A. Bourgeois, , and X. N. Xio, 2004: A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Wea. Rev., 132, 897914.

    • Search Google Scholar
    • Export Citation
  • Barker, D. M., and Coauthors, 2012: The Weather Research and Forecasting Model's Community Variational/Ensemble Data Assimilation System: WRFDA. Bull. Amer. Meteor. Soc., 93, 831843.

    • Search Google Scholar
    • Export Citation
  • Berner, J., , G. J. Shutts, , M. Leutbecher, , and T. N. Palmer, 2009: A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF ensemble prediction system. J. Atmos. Sci., 66, 603626.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., , B. J. Etherton, , and S. J. Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420436.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., 2005: Ensemble-derived stationary and flow-dependent background error covariances: Evaluation in a quasi-operational NWP setting. Quart. J. Roy. Meteor. Soc., 131, 10131043.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., , P. L. Houtekamer, , C. Charette, , H. L. Mitchell, , and B. He, 2010a: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part I: Description and single-observation experiments. Mon. Wea. Rev., 138, 15501566.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., , P. L. Houtekamer, , C. Charette, , H. L. Mitchell, , and B. He, 2010b: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part II: One-month experiments with real observations. Mon. Wea. Rev., 138, 15671586.

    • Search Google Scholar
    • Export Citation
  • Burgers, G., , P. J. van Leeuwen, , and G. Evensen, 1998: Analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126, 17191724.

  • Campbell, W. F., , C. H. Bishop, , and D. Hodyss, 2010: Vertical covariance localization for satellite radiances in ensemble Kalman filters. Mon. Wea. Rev., 138, 282290.

    • Search Google Scholar
    • Export Citation
  • Cavallo, S. M., , R. D. Torn, , C. Snyder, , C. Davis, , W. Wang, , and J. Done, 2013: Evaluation of the Advanced Hurricane WRF data assimilation system for the 2009 Atlantic hurricane season. Mon. Wea. Rev., 141, 523541.

    • Search Google Scholar
    • Export Citation
  • Chen, F., , and J. Dudhia, 2001: Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Wea. Rev., 129, 569585.

    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., , and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo. 104606, Vol. 3, 85 pp.

  • Clayton, A. M., , A. C. Lorenc, , and D. M. Barker, 2012: Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met Office. Quart. J. Roy. Meteor. Soc., 139, 14451461, doi:10.1002/qj.2054.

    • Search Google Scholar
    • Export Citation
  • Courtier, P., , J.-N. Thépaut, , and A. Hollingsworth, 1994: A strategy for operational implementation of 4D-Var, using an incremental approach. Quart. J. Roy. Meteor. Soc., 120, 13671387.

    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., , and P. A. Harr, 2008: Tropical cyclone structure (TCS08) field experiment science basis, observational platforms, and strategy. Asia-Pac. J. Atmos. Sci., 44 (3), 209231.

    • Search Google Scholar
    • Export Citation
  • Etherton, B. J., , and C. H. Bishop, 2004: Resilience of hybrid ensemble/3DVAR analysis schemes to model error and ensemble covariance error. Mon. Wea. Rev., 132, 10651080.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99 (C5), 10 14310 162.

    • Search Google Scholar
    • Export Citation
  • Guo, Y.-R., , H.-C. Lin, , X. X. Ma, , X.-Y. Huang, , C. T. Terng, , and Y.-H. Kuo, 2006: Impact of WRF-Var (3DVar) background error statistics on typhoon analysis and forecast. Extended Abstracts, WRF Users' Workshop, Boulder, CO, NCAR, P4.2. [Available online at http://www.mmm.ucar.edu/wrf/users/workshops/WS2006/abstracts/PSession04/P4_2_Guo.pdf.]

  • Hamill, T. M., , and C. Snyder, 2000: A hybrid ensemble Kalman filter–3D variational analysis scheme. Mon. Wea. Rev., 128, 29052919.

  • Hamill, T. M., , J. S. Whitaker, , M. Fiorino, , and S. G. Benjamin, 2011a: Global ensemble predictions of 2009's tropical cyclones initialized with an ensemble Kalman filter. Mon. Wea. Rev., 139, 668688.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., , J. S. Whitaker, , D. T. Kleist, , M. Fiorino, , and S. G. Benjamin, 2011b: Predictions of 2010's tropical cyclones using the GFS and ensemble-based data assimilation methods. Mon. Wea. Rev., 139, 32433247.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., , Y. Noh, , and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., , and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796811.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., , H. L. Mitchell, , G. Pellerin, , M. Buehner, , M. Charron, , L. Spacek, , and B. Hansen, 2005: Atmospheric data assimilation with an ensemble Kalman filter: Results with real observations. Mon. Wea. Rev., 133, 604620.

    • Search Google Scholar
    • Export Citation
  • Hsiao, L.-F., , C. S. Liou, , T. C. Yeh, , Y. R. Guo, , D. S. Chen, , K. N. Huang, , C. T. Terng, , and J. H. Chen, 2010: A vortex relocation scheme for tropical cyclone initialization in Advanced Research WRF. Mon. Wea. Rev., 138, 32983315.

    • Search Google Scholar
    • Export Citation
  • Hsiao, L.-F., , D.-S. Chen, , Y.-H. Kuo, , Y.-R. Guo, , T.-C. Yeh, , J.-S. Hong, , C.-T. Fong, , and C.-S. Lee, 2012: Application of WRF 3DVAR to operational typhoon prediction in Taiwan: Impact of outer loop and partial cycling approaches. Wea. Forecasting, 27, 12491263.

    • Search Google Scholar
    • Export Citation
  • Huang, X.-Y., , and P. Lynch, 1993: Diabatic digital filter initialization: Application to the HIRLAM model. Mon. Wea. Rev., 121, 589603.

    • Search Google Scholar
    • Export Citation
  • Huang, X.-Y., and Coauthors, 2009: Four-dimensional variational data assimilation for WRF: Formulation and preliminary results. Mon. Wea. Rev., 137, 299314.

    • Search Google Scholar
    • Export Citation
  • Ide, K., , P. Courtier, , M. Ghil, , and A. Lorenc, 1997: Unified notation for data assimilation: Operational, sequential and variational. J. Meteor. Soc. Japan, 75, 181189.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181.

  • Kain, J. S., , and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., , and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 24, Amer. Meteor. Soc., 165–170.

  • Kurihara, Y., , M. A. Bender, , R. E. Tuleya, , and R. J. Ross, 1995: Improvements in the GFDL hurricane prediction system. Mon. Wea. Rev., 123, 27912801.

    • Search Google Scholar
    • Export Citation
  • Liu, Q., , T. Marchok, , H. Pan, , M. Bender, , and S. Lord, 2000: Improvements in hurricane initialization and forecasting at NCEP with global and regional (GFDL) models. NCEP/EMC Tech. Procedures Bull. 472, 7 pp. [Available online at http://205.156.64.206/om/tpb/472.htm.]

  • Liu, Z., , C. S. Schwartz, , C. Snyder, , and S.-Y. Ha, 2012: Impact of assimilating AMSU-A radiances on forecasts of 2008 Atlantic tropical cyclones initialized with a limited-area ensemble Kalman filter. Mon. Wea. Rev., 140, 40174034.

    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., 2003: The potential of the ensemble Kalman filter for NWP—A comparison with 4D-VAR. Quart. J. Roy. Meteor. Soc., 129, 31833203.

    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., and Coauthors, 2000: The Met. Office global three-dimensional variational data assimilation scheme. Quart. J. Roy. Meteor. Soc., 126, 29913012.

    • Search Google Scholar
    • Export Citation
  • Lynch, P., 1997: The Dolph–Chebyshev window: A simple optimal filter. Mon. Wea. Rev., 125, 655660.

  • Lynch, P., , and X.-Y. Huang, 1992: Initialization of the HIRLAM model using a digital filter. Mon. Wea. Rev., 120, 10191034.

  • Ma, L.-M., , and Z.-M. Tan, 2009: Improving the behavior of the cumulus parameterization for tropical cyclone prediction: Convection trigger. Atmos. Res., 92 (2), 190211.

    • Search Google Scholar
    • Export Citation
  • Meng, Z., , and F. Zhang, 2008a: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part III: Comparison with 3DVAR in a real-data case study. Mon. Wea. Rev., 136, 522540.

    • Search Google Scholar
    • Export Citation
  • Meng, Z., , and F. Zhang, 2008b: Test of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part IV: Comparison with 3DVar in a month-long experiment. Mon. Wea. Rev., 136, 36713682.

    • Search Google Scholar
    • Export Citation
  • Miyoshi, T., , Y. Sato, , and T. Kadowaki, 2010: Ensemble Kalman filter and 4D-Var intercomparison with the Japanese Operational Global Analysis and Prediction System. Mon. Wea. Rev., 138, 28462866.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., , S. J. Taubman, , P. D. Brown, , M. J. Iacono, , and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 (D14), 16 66316 682.

    • Search Google Scholar
    • Export Citation
  • Parrish, D. F., , and J. C. Derber, 1992: The National Meteorological Center's spectral statistical interpolation analysis system. Mon. Wea. Rev., 120, 17471763.

    • Search Google Scholar
    • Export Citation
  • Rainwater, S., , and B. Hunt, 2013: Mixed resolution ensemble data assimilation. Mon. Wea. Rev., 141, 30073021.

  • Schwartz, C. S., , Z. Liu, , Y. Chen, , and X.-Y. Huang, 2012: Impact of assimilating microwave radiances with a limited-area ensemble data assimilation system on forecasts of Typhoon Morakot. Wea. Forecasting, 27, 424437.

    • Search Google Scholar
    • Export Citation
  • Shutts, G., 2005: A kinetic energy backscatter algorithm for use in ensemble prediction systems. Quart. J. Roy. Meteor. Soc., 131, 30793102.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech Note NCAR/TN-475+STR, 113 pp. [Available from UCAR Communications, P. O. Box 3000, Boulder, CO 80307.]

  • Tao, W.-K., , and J. Simpson, 1993: The Goddard cumulus ensemble model. Part I: Model description. Terr. Atmos. Oceanic Sci., 4, 3572.

  • Tao, W.-K., and Coauthors, 2003: Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model. Meteor. Atmos. Phys., 82, 97137.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., 2010: Performance of a mesoscale ensemble Kalman filter (EnKF) during the NOAA high-resolution hurricane test. Mon. Wea. Rev., 138, 43754392.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., , and G. J. Hakim, 2009: Ensemble data assimilation applied to RAINEX observations of Hurricane Katrina (2005). Mon. Wea. Rev., 137, 28172829.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., , G. J. Hakim, , and C. Snyder, 2006: Boundary conditions for limited-area ensemble Kalman filters. Mon. Wea. Rev., 134, 24902502.

    • Search Google Scholar
    • Export Citation
  • Wang, J., and Coauthors, 2010: Water vapor variability and comparisons in the subtropical Pacific from The Observing System Research and Predictability Experiment-Pacific Asian Regional Campaign (T-PARC) driftsonde, Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC), and reanalyses. J. Geophys. Res., 115, D21108, doi:10.1029/2010JD014494.

    • Search Google Scholar
    • Export Citation
  • Wang, X., 2011: Application of the WRF Hybrid ETKF–3DVAR data assimilation system for hurricane track forecasts. Wea. Forecasting, 26, 868884.

    • Search Google Scholar
    • Export Citation
  • Wang, X., , T. M. Hamill, , J. S. Whitaker, , and C. H. Bishop, 2007a: A comparison of hybrid ensemble transform Kalman filter–OI and ensemble square-root filter analysis schemes. Mon. Wea. Rev., 135, 10551076.

    • Search Google Scholar
    • Export Citation
  • Wang, X., , C. Snyder, , and T. M. Hamill, 2007b: On the theoretical equivalence of differently proposed ensemble/3D–Var hybrid analysis schemes. Mon. Wea. Rev., 135, 222227.

    • Search Google Scholar
    • Export Citation
  • Wang, X., , D. Barker, , C. Snyder, , and T. M. Hamill, 2008a: A hybrid ETKF–3DVAR data assimilation scheme for the WRF model. Part I: Observing system simulation experiment. Mon. Wea. Rev., 136, 51165131.

    • Search Google Scholar
    • Export Citation
  • Wang, X., , D. Barker, , C. Snyder, , and T. M. Hamill, 2008b: A hybrid ETKF–3DVAR data assimilation scheme for the WRF model. Part II: Real observation experiments. Mon. Wea. Rev., 136, 51325147.

    • Search Google Scholar
    • Export Citation
  • Wang, X., , T. M. Hamill, , J. S. Whitaker, , and C. H. Bishop, 2009: A comparison of the hybrid and EnSRF analysis schemes in the presence of model error due to unresolved scales. Mon. Wea. Rev., 137, 32193232.

    • Search Google Scholar
    • Export Citation
  • Wang, X., , D. F. Parrish, , D. T. Kleist, , and J. S. Whitaker, 2013: GSI 3DVAR-based ensemble-variational hybrid data assimilation for NCEP Global Forecast System: Single-resolution experiments. Mon. Wea. Rev., 141, 40984117.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., , and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 19131924.

  • Whitaker, J. S., , T. M. Hamill, , X. Wei, , Y. Song, , and Z. Toth, 2008: Ensemble data assimilation with the NCEP Global Forecast System. Mon. Wea. Rev., 136, 463482.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., , Y. Weng, , J. A. Sippel, , Z. Meng, , and C. H. Bishop, 2009a: Cloud-resolving hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 137, 21052125.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., , M. Zhang, , and J. A. Hansen, 2009b: Coupling ensemble Kalman filter with four-dimensional variational data assimilation. Adv. Atmos. Sci., 26, 18.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., , M. Zhang, , and J. Poterjoy, 2013: E3DVar: Coupling an ensemble Kalman filter with three-dimensional variational data assimilation in a limited-area weather prediction model and comparison to E4DVar. Mon. Wea. Rev., 141, 900917.

    • Search Google Scholar
    • Export Citation
  • Zhang, M., , and F. Zhang, 2012: E4DVar: Coupling an ensemble Kalman filter with four-dimensional variational data assimilation in a limited-area weather prediction model. Mon. Wea. Rev., 140, 587600.

    • Search Google Scholar
    • Export Citation
  • Zhang, M., , F. Zhang, , X.-Y. Huang, , and X. Zhang, 2011: Intercomparison of an ensemble Kalman filter with three- and four-dimensional variational data assimilation methods in a limited-area model over the month of June 2003. Mon. Wea. Rev., 139, 566572.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 86 86 8
PDF Downloads 70 70 3

Comparing Limited-Area 3DVAR and Hybrid Variational-Ensemble Data Assimilation Methods for Typhoon Track Forecasts: Sensitivity to Outer Loops and Vortex Relocation

View More View Less
  • 1 National Center for Atmospheric Research,* Boulder, Colorado
  • | 2 Central Weather Bureau, Taipei, Taiwan
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The Weather Research and Forecasting Model (WRF) “hybrid” variational-ensemble data assimilation (DA) algorithm was used to initialize WRF model forecasts of three tropical cyclones (TCs). The hybrid-initialized forecasts were compared to forecasts initialized by WRF's three-dimensional variational (3DVAR) DA system. An ensemble adjustment Kalman filter (EAKF) updated a 32-member WRF-based ensemble system that provided flow-dependent background error covariances for the hybrid. The 3DVAR, hybrid, and EAKF configurations cycled continuously for ~3.5 weeks and produced new analyses every 6 h that initialized 72-h WRF forecasts with 45-km horizontal grid spacing. Additionally, the impact of employing a TC relocation technique and using multiple outer loops (OLs) in the 3DVAR and hybrid minimizations were explored.

Model output was compared to conventional, dropwindsonde, and TC “best track” observations. On average, the hybrid produced superior forecasts compared to 3DVAR when only one OL was used during minimization. However, when three OLs were employed, 3DVAR forecasts were dramatically improved but the mean hybrid performance changed little. Additionally, incorporation of TC relocation within the cycling systems further improved the mean 3DVAR-initialized forecasts but the average hybrid-initialized forecasts were nearly unchanged.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Craig Schwartz, National Center for Atmospheric Research, 3090 Center Green Dr., Boulder, CO 80301. E-mail: schwartz@ucar.edu

Abstract

The Weather Research and Forecasting Model (WRF) “hybrid” variational-ensemble data assimilation (DA) algorithm was used to initialize WRF model forecasts of three tropical cyclones (TCs). The hybrid-initialized forecasts were compared to forecasts initialized by WRF's three-dimensional variational (3DVAR) DA system. An ensemble adjustment Kalman filter (EAKF) updated a 32-member WRF-based ensemble system that provided flow-dependent background error covariances for the hybrid. The 3DVAR, hybrid, and EAKF configurations cycled continuously for ~3.5 weeks and produced new analyses every 6 h that initialized 72-h WRF forecasts with 45-km horizontal grid spacing. Additionally, the impact of employing a TC relocation technique and using multiple outer loops (OLs) in the 3DVAR and hybrid minimizations were explored.

Model output was compared to conventional, dropwindsonde, and TC “best track” observations. On average, the hybrid produced superior forecasts compared to 3DVAR when only one OL was used during minimization. However, when three OLs were employed, 3DVAR forecasts were dramatically improved but the mean hybrid performance changed little. Additionally, incorporation of TC relocation within the cycling systems further improved the mean 3DVAR-initialized forecasts but the average hybrid-initialized forecasts were nearly unchanged.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Craig Schwartz, National Center for Atmospheric Research, 3090 Center Green Dr., Boulder, CO 80301. E-mail: schwartz@ucar.edu
Save