• Anthes, R., and Coauthors, 2008: The COSMIC/FORMOSAT-3 Mission: Early results. Bull. Amer. Meteor. Soc., 89, 313333.

  • Aparicio, J., , and G. Deblonde, 2008: Impact of the assimilation of CHAMP refractivity profiles in Environment Canada global forecasts. Mon. Wea. Rev., 136, 257275.

    • Search Google Scholar
    • Export Citation
  • Aparicio, J., , G. Deblonde, , L. Garand, , and S. Laroche, 2009: The signature of the atmospheric compressibility factor in COSMIC, CHAMP, and GRACE radio occultation data. J. Geophys. Res., 114, D16114, doi:10.1029/2008JD011156.

    • Search Google Scholar
    • Export Citation
  • Auligné, T., , A. McNally, , and D. Dee, 2007: Adaptive bias correction for satellite data in a numerical weather prediction system. Quart. J. Roy. Meteor. Soc., 133, 631642.

    • Search Google Scholar
    • Export Citation
  • Bauer, P., , G. Radnoti, , S. Healy, , and C. Cardinali, 2013: GNSS radio occultation constellation observing system experiments. Mon. Wea. Rev., in press.

  • Beyerle, G., and Coauthors, 2011: First results from the GPS atmosphere sounding experiment TOR aboard the TerraSAR-X satellite. Atmos. Chem. Phys., 11, 66876699.

    • Search Google Scholar
    • Export Citation
  • Bonavita, M., , L. Raynaud, , and L. Isaksen, 2011: Estimating background-error variances with the ECMWF ensemble of data assimilations system: Some effects of ensemble size and day-to-day variability. Quart. J. Roy. Meteor. Soc., 137, 423434.

    • Search Google Scholar
    • Export Citation
  • Bonavita, M., , L. Isaksen, , and E. Hólm, 2012: On the use of EDA background error variances in the ECMWF 4D-Var. Quart. J. Roy. Meteor. Soc., 138, 15401559.

    • Search Google Scholar
    • Export Citation
  • Bormann, N., , S. Saarinen, , G. Kelly, , and J. Thépaut, 2003: The spatial structure of observation errors in atmospheric motion vectors from geostationary satellite data. Mon. Wea. Rev., 131, 706718.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., , M. Miller, , and T. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 125, 28872908.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., , M. Leutbecher, , L. Isaksen, , and J. Haseler, 2010: Combined use of EDA- and SV-based perturbations in the EPS. ECMWF Newsletter, No. 123, ECMWF, Reading, United Kingdom, 2228.

    • Search Google Scholar
    • Export Citation
  • Burgers, G., , P. Jan van Leeuwen, , and G. Evensen, 1998: Analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126, 17191724.

  • Cardinali, C., , and S. Healy, 2011: GPS-RO at ECMWF. Proc. ECMWF Seminar of Data Assimilation for Atmosphere and Ocean, Reading, United Kingdom, ECMWF, 323–336.

  • Collard, A., , and S. Healy, 2003: The combined impact of future space-based atmospheric sounding instruments on numerical weather-prediction analysis fields: A simulation study. Quart. J. Roy. Meteor. Soc., 129, 27412760.

    • Search Google Scholar
    • Export Citation
  • Cucurull, L., 2010: Improvement in the use of an operational constellation of GPS radio occultation receivers in weather forecasting. Wea. Forecasting, 25, 749767.

    • Search Google Scholar
    • Export Citation
  • Eyre, J., 1989: Inversion of cloudy satellite sounding radiances by nonlinear optimal estimation. I: Theory and simulation for TOVS. Quart. J. Roy. Meteor. Soc., 115, 10011026.

    • Search Google Scholar
    • Export Citation
  • Eyre, J., 1990: The information content of data from satellite sounding systems: A simulation study. Quart. J. Roy. Meteor. Soc., 116, 401434.

    • Search Google Scholar
    • Export Citation
  • Fisher, M., , M. Leutbecher, , and G. Kelly, 2005: On the equivalence between Kalman smoothing and weak-constraint four-dimensional variational data assimilation. Quart. J. Roy. Meteor. Soc., 131, 32353246.

    • Search Google Scholar
    • Export Citation
  • Healy, S., 2008: Forecast impact experiment with a constellation of GPS radio occultation receivers. Atmos. Sci. Lett., 9, 111118, doi:10.1002/asl.169.

    • Search Google Scholar
    • Export Citation
  • Healy, S., 2011: Refractivity coefficients used in the assimilation of GPS radio occultation measurements. J. Geophys. Res.,116, D01106, doi:10.1029/2010JD014013.

  • Healy, S., , and J.-N. Thépaut, 2006: Assimilation experiments with CHAMP GPS radio occultation measurements. Quart. J. Roy. Meteor. Soc., 132, 605623.

    • Search Google Scholar
    • Export Citation
  • Healy, S., , J. Eyre, , M. Hamrud, , and J.-N. Thépaut, 2007: Assimilating GPS radio occultation measurements with two-dimensional bending angle observation operators. Quart. J. Roy. Meteor. Soc., 133, 12131227.

    • Search Google Scholar
    • Export Citation
  • Isaksen, L., , M. Fisher, , and J. Berner, 2007: Use of analysis ensembles in estimating flow-dependent background error variance. Proc. ECMWF Workshop on Flow-Dependent Aspects of Data Assimilation, Reading, United Kingdom, ECMWF, 6586.

  • Isaksen, L., , M. Bonavita, , R. Buizza, , M. Fisher, , J. Haseler, , M. Leutbecher, , and L. Raynaud, 2010a: Ensemble of data assimilations at ECMWF. ECMWF Tech. Memo. 636, 45 pp.

  • Isaksen, L., , J. Haseler, , R. Buizza, , and M. Leutbecher, 2010b: The new ensemble of data assimilations. ECMWF Newsletter, No. 123, ECMWF, Reading, United Kingdom, 1721.

    • Search Google Scholar
    • Export Citation
  • Kursinski, E., and Coauthors, 1996: Initial results of radio occultation observations of Earth's atmosphere using the Global Positioning System. Science, 271, 11071110.

    • Search Google Scholar
    • Export Citation
  • Leutbecher, M., 2009: Diagnosis of ensemble forecasting systems. Proc. ECMWF Seminar on Diagnosis of Forecasting and Data Assimilation Systems, Reading, United Kingdom, ECMWF, 235–266.

  • List, R., Ed., 1984: Smithsonian Meteorological Tables. Smithsonian Institution Press, 504 pp.

  • Liu, Z.-Q., , and F. Rabier, 2003: The potential of high-density observations for numerical weather prediction: A study with simulated observations. Quart. J. Roy. Meteor. Soc., 129, 30133035.

    • Search Google Scholar
    • Export Citation
  • Luntama, J.-P., and Coauthors, 2008: Prospects of the EPS GRAS Mission for Operational Atmospheric Applications. Bull. Amer. Meteor. Soc., 89, 18631875.

    • Search Google Scholar
    • Export Citation
  • Masutani, M., and Coauthors, 2010: Observing System Simulation Experiments. Data Assimilation: Making Sense of Observations, B. K. W. Lahoz and R. Ménard, Eds., Springer, 647–679.

  • Palmer, T., , R. Buizza, , F. Doblas-Reyes, , T. Jung, , M. Leutbecher, , G. Shutts, , M. Steinheimer, , and A. Weisheimer, 2009: Stochastic parametrization and model uncertainty. ECMWF Tech. Memo. 598, 42 pp.

  • Poli, P., , S. Healy, , F. Rabier, , and J. Pailleux, 2008: Preliminary assessment of the scalability of GPS radio occultations impact in numerical weather prediction. Geophys. Res. Lett.,35, L23811, doi:10.1029/2008GL035873.

  • Rabier, F., , N. Fourrié, , D. Chafäi, , and P. Prunet, 2002: Channel selection methods for infrared atmospheric sounding interferometer radiances. Quart. J. Roy. Meteor. Soc., 128, 10111027.

    • Search Google Scholar
    • Export Citation
  • Raynaud, L., , L. Berre, , and G. Desroziers, 2009: Objective filtering of ensemble-based background-error variances. Quart. J. Roy. Meteor. Soc., 135, 11771199.

    • Search Google Scholar
    • Export Citation
  • Rennie, M. P., 2010: The impact of GPS radio occultation assimilation at the Met Office. Quart. J. Roy. Meteor. Soc., 136, 116131.

  • Rocken, C., and Coauthors, 1997: Analysis and validation of GPS/MET data in the neutral atmosphere. J. Geophys. Res.,102, 29 849–29 866.

  • Rodgers, C., 2000: Inverse Methods for Atmospheric Sounding: Theory and Practice. World Scientific, 240 pp.

  • Rüeger, J., 2002: Refractive index formulae for electronic distance measurements with radio and millimetre waves. Unisurv Rep. 68, School of Surveying and Spatial Information Systems, University of New South Wales, Sydney, Australia, 52 pp.

  • Simmons, A., , and D. Burridge, 1981: An energy and angular momentum conserving vertical finite difference scheme and hybrid coordinate. Mon. Wea. Rev., 109, 758766.

    • Search Google Scholar
    • Export Citation
  • Tan, D. G. H., , E. Andersson, , M. Fisher, , and I. Isaksen, 2007: Observing-system impact assessment using a data assimilation ensemble technique: Application to the ADM-Aeolus wind profiling mission. Quart. J. Roy. Meteor. Soc., 133, 381390.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1977: Introduction to Mathematics of Inversion in Remote Sensing and Indirect Measurements. Elsevier Scientific, 243 pp.

  • Varella, H., , L. Berre, , and G. Desroziers, 2011: Diagnostic and impact studies of a wavelet formulation of background-error correlations in a global model. Quart. J. Roy. Meteor. Soc., 137, 13691379.

    • Search Google Scholar
    • Export Citation
  • Vialard, J., , F. Vitart, , M. Balmaseda, , T. Stockdale, , and D. Anderson, 2005: An ensemble generation method for seasonal forecasting with an ocean–atmosphere coupled model. Mon. Wea. Rev., 133, 441453.

    • Search Google Scholar
    • Export Citation
  • von Engeln, A., , S. Healy, , C. Marquardt, , Y. Andres, , and F. Sancho, 2009: Validation of operational GRAS radio occultation data. Geophys. Res. Lett.,36, L1780, doi:10.1029/2009GL039968.

  • Wickert, J., and Coauthors, 2001: Atmosphere sounding by GPS radio occultation: First results from CHAMP. Geophys. Res. Lett., 28, 32633266.

    • Search Google Scholar
    • Export Citation
  • Wickert, J., and Coauthors, 2009: GPS radio occultation: results from CHAMP, GRACE and FORMOSAT-3/COSMIC. Terr. Atmos. Oceanic Sci., 20, 3550.

    • Search Google Scholar
    • Export Citation
  • Žagar, N., , E. Andersson, , and M. Fisher, 2005: Balanced tropical data assimilation based on a study of equatorial waves in ECMWF short-range forecast errors. Quart. J. Roy. Meteor. Soc., 131, 9871011.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 245 245 18
PDF Downloads 203 203 12

Scaling of GNSS Radio Occultation Impact with Observation Number Using an Ensemble of Data Assimilations

View More View Less
  • 1 European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

An ensemble of data assimilations (EDA) approach is used to estimate how the impact of Global Navigation Satellite System (GNSS) radio occultation (RO) measurements scales as a function of observation number in the ECMWF numerical weather prediction system. The EDA provides an estimate of the theoretical analysis and short-range forecast error statistics, based on the ensemble “spread,” which is the standard deviation of the ensemble members about the ensemble mean. This study is based on computing how the ensemble spread of various parameters changes as a function of the number of simulated GNSS RO observations. The impact from 2000 up to 128 000 globally distributed simulated GNSS RO profiles per day is investigated. It is shown that 2000 simulated GNSS RO measurements have an impact similar to real measurements in the EDA and that the EDA-based impact of real data can be related to the impact in observing system experiments. The dependence of the ensemble statistics on observation error statistics assumed when assimilating the data, rather than the actual observation errors, is emphasized. There is no evidence of “saturation” of forecast impact even with 128 000 GNSS RO profiles per day. However, this result is a well-known consequence of always improving the theoretical analysis and short-range forecast error statistics when adding new observations that are assumed to have uncorrelated observation errors. In general, it is found that 16 000 GNSS RO profiles per day have around half the impact of 128 000 profiles, based on the reduction of ensemble spread values where the GNSS RO measurements have the largest impact.

Corresponding author address: Peter Bauer, European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading RG2 9AX, United Kingdom. E-mail: peter.bauer@ecmwf.int

Abstract

An ensemble of data assimilations (EDA) approach is used to estimate how the impact of Global Navigation Satellite System (GNSS) radio occultation (RO) measurements scales as a function of observation number in the ECMWF numerical weather prediction system. The EDA provides an estimate of the theoretical analysis and short-range forecast error statistics, based on the ensemble “spread,” which is the standard deviation of the ensemble members about the ensemble mean. This study is based on computing how the ensemble spread of various parameters changes as a function of the number of simulated GNSS RO observations. The impact from 2000 up to 128 000 globally distributed simulated GNSS RO profiles per day is investigated. It is shown that 2000 simulated GNSS RO measurements have an impact similar to real measurements in the EDA and that the EDA-based impact of real data can be related to the impact in observing system experiments. The dependence of the ensemble statistics on observation error statistics assumed when assimilating the data, rather than the actual observation errors, is emphasized. There is no evidence of “saturation” of forecast impact even with 128 000 GNSS RO profiles per day. However, this result is a well-known consequence of always improving the theoretical analysis and short-range forecast error statistics when adding new observations that are assumed to have uncorrelated observation errors. In general, it is found that 16 000 GNSS RO profiles per day have around half the impact of 128 000 profiles, based on the reduction of ensemble spread values where the GNSS RO measurements have the largest impact.

Corresponding author address: Peter Bauer, European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading RG2 9AX, United Kingdom. E-mail: peter.bauer@ecmwf.int
Save