• Baldwin, M. E., , and K. E. Mitchell, 1997: The NCEP hourly multi-sensor U.S. precipitation analysis for operations and GCIP research. Preprints, 13th Conf. on Hydrology, Long Beach, CA, Amer. Meteor. Soc., 5455.

  • Beebe, R. G., , and F. C. Bates, 1955: A mechanism for assisting in the release of convective instability. Mon. Wea. Rev., 83, 110.

  • Bell, G. D., , and L. F. Bosart, 1988: Appalachian cold-air damming. Mon. Wea. Rev., 116, 137161.

  • Bjerknes, J., , and H. Solberg, 1921: Meteorological conditions for the formation of rain. Geofys. Publ., 2, 160.

  • Braun, S. A., , R. A. Houze Jr., , and B. F. Smull, 1997: Airborne dual-Doppler observations of an intense frontal system approaching the Pacific Northwest coast. Mon. Wea. Rev., 125, 31313156.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., , R. Rotunno, , and J. B. Klemp, 1999a: Effects of coastal orography on landfalling cold fronts. Part I: Dry, inviscid dynamics. J. Atmos. Sci., 56, 517533.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., , R. Rotunno, , and J. B. Klemp, 1999b: Effects of coastal orography on landfalling cold fronts. Part II: Effects of surface friction. J. Atmos. Sci., 56, 33663384.

    • Search Google Scholar
    • Export Citation
  • Carter, D. A., , K. S. Gage, , W. L. Ecklund, , W. M. Angevine, , P. E. Johnston, , A. C. Riddle, , J. S. Wilson, , and C. R. Williams, 1995: Developments in UHF lower tropospheric wind profiling at NOAA's Aeronomy Laboratory. Radio Sci., 30, 9971001.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., , and C. F. Mass, 1995: The structure and evolution of cold surges east of the Rocky Mountains. Mon. Wea. Rev., 123, 25772610.

    • Search Google Scholar
    • Export Citation
  • Daly, C., , P. Neilson, , and D. L. Phillips, 1994: A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140158.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., 2004: Fifty-two years of “pineapple-express”storms across the west coast of North America. Rep. CEC-500-2005-004, 15 pp. [Available online at http://www.energy.ca.gov/2005publications/CEC-500-2005-004/CEC-500-2005-004.PDF.]

  • Dettinger, M. D., , K. Redmond, , and D. Cayan, 2004: Winter orographic precipitation ratios in the Sierra Nevada—Large-scale atmospheric circulations and hydrologic consequences. J. Hydrometeor., 5, 11021116.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., , F. M. Ralph, , T. Das, , P. J. Neiman, , and D. Cayan, 2011: Atmospheric rivers, floods, and the water resources of California. Water, 3, 455478.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., and Coauthors, 2012: Design and quantification of an extreme winter storm scenario for emergency preparedness and planning exercises in California. Nat. Hazards, 60, 10851111.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., 1997: The influence of mesoscale coastal orography on a coastal jet and rainband. Mon. Wea. Rev., 125, 14651488.

  • Duan, J. M., and Coauthors, 1996: GPS meteorology: Direct estimation of the absolute value of precipitable water. J. Appl. Meteor., 35, 830838.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1990: Mountain waves and downslope winds. Atmospheric Processes over Complex Terrain, Meteor. Monogr., No. 45, Amer. Meteor. Soc., 59–81.

  • Egger, J., , and K. P. Hoinka, 1992: Fronts and orography. Meteor. Atmos. Phys., 48, 336.

  • Fulton, R. A., , J. P. Breidenbach, , D.-J. Seo, , D. A. Miller, , and T. O'Bannon, 1998: The WSR-88D rainfall algorithm. Wea. Forecasting, 13, 377395.

    • Search Google Scholar
    • Export Citation
  • Galewsky, J., , and A. Sobel, 2005: Moist dynamics and orographic precipitation in northern and central California during the New Year's flood of 1997. Mon. Wea. Rev., 133, 15941612.

    • Search Google Scholar
    • Export Citation
  • Guan, B., , D. E. Waliser, , N. P. Molotch, , E. J. Fetzer, , and P. J. Neiman, 2012: Does the Madden–Julian oscillation influence wintertime atmospheric rivers and snowpack in the Sierra Nevada? Mon. Wea. Rev., 140, 325342.

    • Search Google Scholar
    • Export Citation
  • Heggli, M. R., , and R. M. Rauber, 1988: The characteristics and evolution of supercooled water in wintertime storms over the Sierra Nevada: A summary of microwave radiometric measurements taken during the Sierra Cooperative Pilot Project. J. Appl. Meteor., 27, 9891015.

    • Search Google Scholar
    • Export Citation
  • Hollinger, J. P., , J. L. Peirce, , and G. A. Poe, 1990: SSM/I instrument evaluation. IEEE Trans. Geosci. Remote Sens., 28, 781790.

  • Hughes, M., , P. J. Neiman, , E. Sukovich, , and M. Ralph, 2012: Representation of the Sierra Barrier Jet in 11 years of a high-resolution dynamical reanalysis downscaling compared with long-term wind profiler observations. J. Geophys. Res., 117, D18116, doi:10.1029/2012JD017869.

    • Search Google Scholar
    • Export Citation
  • Kim, J., , and H.-S. Kang, 2007: The impact of the Sierra Nevada on low-level winds and water vapor transport. J. Hydrometeor., 8, 790804.

    • Search Google Scholar
    • Export Citation
  • Kingsmill, D. E., , P. J. Neiman, , B. J. Moore, , M. Hughes, , S. E. Yuter, , and F. M. Ralph, 2013: Kinematic and thermodynamic structures of Sierra barrier jets and overrunning atmospheric rivers during a landfalling winter storm in northern California. Mon. Wea. Rev., 141, 2015–2036.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., , R. P. Allan, , E. F. Wood, , G. Villarini, , D. J. Brayshaw, , and A. J. Wade, 2011: Winter floods in Britain are connected with atmospheric rivers. Geophys. Res. Lett., 38, L23803, doi:10.1029/2011GL049783.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., , and E. J. Zipser, 1972: The Front Range windstorm of 11 January 1972: A meteorological narrative. Weatherwise, 25, 5663.

    • Search Google Scholar
    • Export Citation
  • Loescher, K. A., , G. S. Young, , B. A. Colle, , and N. S. Winstead, 2006: Climatology of barrier jets along the Alaskan coast. Part I: Spatial and temporal distributions. Mon. Wea. Rev., 134, 437453.

    • Search Google Scholar
    • Export Citation
  • Lund, J. R., 2007: Envisioning Futures for the Sacramento–San Joaquin Delta. Public Policy Institute of California, 285 pp.

  • Lundquist, J. D., , J. R. Minder, , P. J. Neiman, , and E. M. Sukovich, 2010: Relationships between barrier jet heights, precipitation distributions, and streamflow in the northern Sierra Nevada. J. Hydrometeor., 11, 11411156.

    • Search Google Scholar
    • Export Citation
  • Marwitz, J., 1983: The kinematics of orographic airflow during Sierra storms. J. Atmos. Sci., 40, 12181227.

  • Marwitz, J., 1987: Deep orographic storms over the Sierra Nevada. Part I: Thermodynamic and kinematic structure. J. Atmos. Sci., 44, 159173.

    • Search Google Scholar
    • Export Citation
  • Mattioli, V., , E. R. Westwater, , C. Cimini, , J. S. Liljegren, , B. M. Lesht, , S. I. Gutman, , and F. J. Schmidlin, 2007: Analysis of radiosonde and ground-based remotely sensed PWV data from the 2004 North Slope of Alaska Arctic Winter Radiometric Experiment. J. Atmos. Oceanic Technol., 24, 415431.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360.

  • Neiman, P. J., , F. M. Ralph, , A. B. White, , D. E. Kingsmill, , and P. O. G. Persson, 2002: The statistical relationship between upslope flow and rainfall in California's coastal mountains: Observations during CALJET. Mon. Wea. Rev., 130, 14681492.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., , P. O. G. Persson, , F. M. Ralph, , D. P. Jorgensen, , A. B. White, , and D. E. Kingsmill, 2004: Modification of fronts and precipitation by coastal blocking during an intense landfalling winter storm in Southern California: Observations during CALJET. Mon. Wea. Rev., 132, 242273.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., , F. M. Ralph, , G. A. Wick, , Y.-H. Kuo, , T.-K. Wee, , Z. Ma, , G. H. Taylor, , and M. D. Dettinger, 2008a: Diagnosis of an intense atmospheric river impacting the Pacific Northwest: Storm summary and offshore vertical structure observed with COSMIC satellite retrievals. Mon. Wea. Rev., 136, 43984420.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., , F. M. Ralph, , G. A. Wick, , J. Lundquist, , and M. D. Dettinger, 2008b: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the West Coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 2247.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., , A. B. White, , F. M. Ralph, , D. J. Gottas, , and S. I. Gutman, 2009: A water vapour flux tool for precipitation forecasting. Proc. Inst. Civ. Eng. Water Manage.,162, 83–94, doi:10.1680/wama.2009.162.2.83.

  • Neiman, P. J., , E. M. Sukovich, , F. M. Ralph, , and M. Hughes, 2010: A seven-year wind profiler–based climatology of the windward barrier jet along California's northern Sierra Nevada. Mon. Wea. Rev., 138, 12061233.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., , L. J. Schick, , F. M. Ralph, , M. Hughes, , and G. A. Wick, 2011: Flooding in western Washington: The connection to atmospheric rivers. J. Hydrometeor., 12, 13371358.

    • Search Google Scholar
    • Export Citation
  • Pandey, G. R., , D. R. Cayan, , and K. P. Georgakakos, 1999: Precipitation structure in the Sierra Nevada of California during winter. J. Geophys. Res., 104, 12 01912 030.

    • Search Google Scholar
    • Export Citation
  • Parish, T. R., 1982: Barrier winds along the Sierra Nevada Mountains. J. Appl. Meteor., 21, 925930.

  • Pierrehumbert, R. T., , and B. Wyman, 1985: Upstream effects of mesoscale mountains. J. Atmos. Sci., 42, 9771003.

  • Ralph, F. M., , and M. D. Dettinger, 2012: Historical and national perspectives on extreme west-coast precipitation associated with atmospheric rivers during December 2010. Bull. Amer. Meteor. Soc., 93, 783790.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., , P. J. Neiman, , and G. A. Wick, 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 17211745.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 2005: Improving short term (0–48 hour) cool-season quantitative precipitation forecasting: Recommendations from a USWRP workshop. Bull. Amer. Meteor. Soc., 86, 16191632.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., , P. J. Neiman, , G. A. Wick, , S. I. Gutman, , M. D. Dettinger, , D. R. Cayan, , and A. B. White, 2006: Flooding on California's Russian River: The role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, doi:10.1029/2006GL026689.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., , P. J. Neiman, , G. N. Kiladis, , K. Weickmann, , and D. M. Reynolds, 2011: A multiscale observational case study of a Pacific atmospheric river exhibiting tropical–extratropical connections and a mesoscale frontal wave. Mon. Wea. Rev., 139, 11691189.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., 1992: Microphysical structure and evolution of a central Sierra Nevada orographic cloud system. J. Appl. Meteor., 31, 324.

    • Search Google Scholar
    • Export Citation
  • Reeves, H. D., , Y.-L. Lin, , and R. Rotunno, 2008: Dynamic forcing and mesoscale variability of heavy precipitation events over the Sierra Nevada Mountains. Mon. Wea. Rev., 136, 6277.

    • Search Google Scholar
    • Export Citation
  • Reynolds, D. W., , and A. S. Dennis, 1986: A review of the Sierra Cooperative Pilot Project. Bull. Amer. Meteor. Soc., 67, 513523.

  • Reynolds, D. W., , and A. P. Kuciauskas, 1988: Remote and in situ observations of Sierra Nevada winter mountain clouds: Relationships between mesoscale structure, precipitation and liquid water. J. Appl. Meteor., 27, 140156.

    • Search Google Scholar
    • Export Citation
  • Rhea, J. O., 1978: Orographic precipitation model for hydrometeorological use. Ph.D. dissertation, Dept. of Atmospheric Science Paper 287, Colorado State University, 198 pp.

  • Schaake, J., , A. Henkel, , and S. Cong, 2004: Application of PRISM climatologies for hydrologic modeling and forecasting in the western U.S. Preprints, 18th Conf. on Hydrology, Seattle, WA, 5.3. [Available online at https://ams.confex.com/ams/pdfpapers/72159.pdf.]

  • Schumacher, P. N., , D. J. Knight, , and L. F. Bosart, 1996: Frontal interaction with the Appalachian Mountains. Part I: A climatology. Mon. Wea. Rev., 124, 24532468.

    • Search Google Scholar
    • Export Citation
  • Smith, B. L., , S. E. Yuter, , P. J. Neiman, , and D. E. Kingsmill, 2010: Water vapor fluxes and orographic precipitation over northern California associated with a land-falling atmospheric river. Mon. Wea. Rev., 138, 74100.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1979: The influence of mountains on the atmosphere. Advances in Geophysics, Vol. 21, Academic Press, 87–230.

  • Smolarkiewicz, P. K., , and R. Rotunno, 1990: Low Froude number flow past three-dimensional obstacles. Part II: Upwind flow reversal zone. J. Atmos. Sci., 47, 14981511.

    • Search Google Scholar
    • Export Citation
  • Smutz, S. W., 1986: A climatology of the Sierra Nevada barrier jet. M.S. thesis, Paper AS-153, Dept. of Atmospheric Science, University of Wyoming, 108 pp.

  • Steiner, M., , O. Bousquet, , R. A. Houze, Jr., , B. F. Smull, , and M. Mancini, 2003: Airflow within major Alpine river valleys under heavy rainfall. Quart. J. Roy. Meteor. Soc., 129, 411431.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., , C. Forster, , and H. Sodemann, 2008: Remote sources of water vapor forming precipitation on the Norwegian west coast at 60°N—A tale of hurricanes and an atmospheric river. J. Geophys. Res., 113, D05102, doi:10.1029/2007JD009006.

    • Search Google Scholar
    • Export Citation
  • Viale, M., , and M. N. Nuñez, 2011: Climatology of winter orographic precipitation over the subtropical central Andes and associated synoptic and regional characteristics. J. Hydrometeor., 12, 481507.

    • Search Google Scholar
    • Export Citation
  • Weber, B. L., , D. B. Wuertz, , D. C. Welsh, , and R. McPeek, 1993: Quality controls for profiler measurements of winds and RASS temperatures. J. Atmos. Oceanic Technol., 10, 452464.

    • Search Google Scholar
    • Export Citation
  • Yu, C.-K., , and B. F. Smull, 2000: Airborne Doppler observations of a landfalling cold front upstream of steep coastal orography. Mon. Wea. Rev., 128, 15771603.

    • Search Google Scholar
    • Export Citation
  • Yu, C.-K., , and N. A. Bond, 2002: Airborne Doppler observations of a cold front in the vicinity of Vancouver Island. Mon. Wea. Rev., 130, 26922708.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., , and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 198 198 45
PDF Downloads 169 169 46

Sierra Barrier Jets, Atmospheric Rivers, and Precipitation Characteristics in Northern California: A Composite Perspective Based on a Network of Wind Profilers

View More View Less
  • 1 Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado
  • | 2 Cooperative Institute for Research in the Environmental Sciences, and NOAA/Earth System Research Laboratory, Boulder, Colorado
  • | 3 Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado
  • | 4 Cooperative Institute for Research in the Environmental Sciences, and NOAA/Earth System Research Laboratory, Boulder, Colorado
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Five 915-MHz wind profilers and GPS receivers across California's northern Central Valley (CV) and adjacent Sierra foothills and coastal zone, in tandem with a 6-km-resolution gridded reanalysis dataset generated from the Weather Research and Forecasting Model, document key spatiotemporal characteristics of Sierra barrier jets (SBJs), landfalling atmospheric rivers (ARs), and their interactions. Composite kinematic and thermodynamic analyses are based on the 13 strongest SBJ cases observed by the Sloughhouse profiler between 2009 and 2011. The analyses show shallow, cool, south-southeasterly (i.e., Sierra parallel) flow and associated water vapor transport strengthening with time early in the 24-h compositing period, culminating in an SBJ core at <1 km above ground over the eastern CV. The SBJ core increases in altitude up the Sierra's windward slope and poleward toward the north end of the CV, but it does not reach the westernmost CV. Above the developing SBJ, strengthening southwesterly flow descends temporally in response to the landfalling AR. The moistening SBJ reaches maximum intensity during the strongest AR flow aloft, at which time the core of the AR-parallel vapor transport slopes over the SBJ. The inland penetration of the AR through the San Francisco Bay gap in the coastal mountains contributes to SBJ moistening and deepening. The SBJ subsequently weakens with the initial cold-frontal period aloft, during which the shallow flow shifts to southwesterly and the heaviest precipitation falls in the Sierra foothills. An orographic precipitation analysis quantitatively links the Sierra-perpendicular (nearly AR parallel) vapor fluxes to enhanced precipitation along the Sierra's windward slope and the SBJ-parallel fluxes to heavy precipitation at the north end of the CV.

Corresponding author address: Paul J. Neiman, Physical Sciences Division, NOAA/Earth System Research Laboratory, Mail Code R/PSD2; 325 Broadway, Boulder, CO 80305. E-mail: paul.j.neiman@noaa.gov

Abstract

Five 915-MHz wind profilers and GPS receivers across California's northern Central Valley (CV) and adjacent Sierra foothills and coastal zone, in tandem with a 6-km-resolution gridded reanalysis dataset generated from the Weather Research and Forecasting Model, document key spatiotemporal characteristics of Sierra barrier jets (SBJs), landfalling atmospheric rivers (ARs), and their interactions. Composite kinematic and thermodynamic analyses are based on the 13 strongest SBJ cases observed by the Sloughhouse profiler between 2009 and 2011. The analyses show shallow, cool, south-southeasterly (i.e., Sierra parallel) flow and associated water vapor transport strengthening with time early in the 24-h compositing period, culminating in an SBJ core at <1 km above ground over the eastern CV. The SBJ core increases in altitude up the Sierra's windward slope and poleward toward the north end of the CV, but it does not reach the westernmost CV. Above the developing SBJ, strengthening southwesterly flow descends temporally in response to the landfalling AR. The moistening SBJ reaches maximum intensity during the strongest AR flow aloft, at which time the core of the AR-parallel vapor transport slopes over the SBJ. The inland penetration of the AR through the San Francisco Bay gap in the coastal mountains contributes to SBJ moistening and deepening. The SBJ subsequently weakens with the initial cold-frontal period aloft, during which the shallow flow shifts to southwesterly and the heaviest precipitation falls in the Sierra foothills. An orographic precipitation analysis quantitatively links the Sierra-perpendicular (nearly AR parallel) vapor fluxes to enhanced precipitation along the Sierra's windward slope and the SBJ-parallel fluxes to heavy precipitation at the north end of the CV.

Corresponding author address: Paul J. Neiman, Physical Sciences Division, NOAA/Earth System Research Laboratory, Mail Code R/PSD2; 325 Broadway, Boulder, CO 80305. E-mail: paul.j.neiman@noaa.gov
Save