Intensification of Hurricane Sandy (2012) through Extratropical Warm Core Seclusion

Thomas J. Galarneau Jr. National Center for Atmospheric Research, *Boulder, Colorado

Search for other papers by Thomas J. Galarneau Jr. in
Current site
Google Scholar
PubMed
Close
,
Christopher A. Davis National Center for Atmospheric Research, *Boulder, Colorado

Search for other papers by Christopher A. Davis in
Current site
Google Scholar
PubMed
Close
, and
Melvyn A. Shapiro National Center for Atmospheric Research, *Boulder, Colorado

Search for other papers by Melvyn A. Shapiro in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Hurricane Sandy's landfall along the New Jersey shoreline at 2330 UTC 29 October 2012 produced a catastrophic storm surge stretching from New Jersey to Rhode Island that contributed to damage in excess of $50 billion—the sixth costliest U.S. tropical cyclone on record since 1900—and directly caused 72 fatalities. Hurricane Sandy's life cycle was marked by two upper-level trough interactions while it moved northward over the western North Atlantic on 26–29 October. During the second trough interaction on 29 October, Sandy turned northwestward and intensified as cold continental air encircled the warm core vortex and Sandy acquired characteristics of a warm seclusion. The aim of this study is to determine the dynamical processes that contributed to Sandy's secondary peak in intensity during its warm seclusion phase using high-resolution numerical simulations. The modeling results show that intensification occurred in response to shallow low-level convergence below 850 hPa that was consistent with the Sawyer–Eliassen solution for the secondary circulation that accompanied the increased baroclinicity in the radial direction. Additionally, cyclonic vertical vorticity generated by tilting of horizontal vorticity along an axis of frontogenesis northwest of Sandy was axisymmetrized. The axis of frontogenesis was anchored to the Gulf Stream in a region of near-surface differential diabatic heating. The unusual northwestward track of Sandy allowed the cyclonic vorticity over the Gulf Stream to form ahead of the main vortex and be readily axisymmetrized. The underlying dynamics driving intensification were nontropical in origin, and supported the reclassification of Sandy as extratropical prior to landfall.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Thomas J. Galarneau Jr., National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: tomjr@ucar.edu

Abstract

Hurricane Sandy's landfall along the New Jersey shoreline at 2330 UTC 29 October 2012 produced a catastrophic storm surge stretching from New Jersey to Rhode Island that contributed to damage in excess of $50 billion—the sixth costliest U.S. tropical cyclone on record since 1900—and directly caused 72 fatalities. Hurricane Sandy's life cycle was marked by two upper-level trough interactions while it moved northward over the western North Atlantic on 26–29 October. During the second trough interaction on 29 October, Sandy turned northwestward and intensified as cold continental air encircled the warm core vortex and Sandy acquired characteristics of a warm seclusion. The aim of this study is to determine the dynamical processes that contributed to Sandy's secondary peak in intensity during its warm seclusion phase using high-resolution numerical simulations. The modeling results show that intensification occurred in response to shallow low-level convergence below 850 hPa that was consistent with the Sawyer–Eliassen solution for the secondary circulation that accompanied the increased baroclinicity in the radial direction. Additionally, cyclonic vertical vorticity generated by tilting of horizontal vorticity along an axis of frontogenesis northwest of Sandy was axisymmetrized. The axis of frontogenesis was anchored to the Gulf Stream in a region of near-surface differential diabatic heating. The unusual northwestward track of Sandy allowed the cyclonic vorticity over the Gulf Stream to form ahead of the main vortex and be readily axisymmetrized. The underlying dynamics driving intensification were nontropical in origin, and supported the reclassification of Sandy as extratropical prior to landfall.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Thomas J. Galarneau Jr., National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: tomjr@ucar.edu
Save
  • Agustí-Panareda, A., S. L. Gray, G. C. Craig, and C. Thorncroft, 2005: The extratropical transition of Tropical Cyclone Lili (1996) and its crucial contribution to a moderate extratropical development. Mon. Wea. Rev., 133, 15621573.

    • Search Google Scholar
    • Export Citation
  • Archambault, H. M., 2011: The downstream extratropical flow response to recurving western North Pacific tropical cyclones. Ph.D. dissertation, Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, 212 pp.

  • Atallah, E. H., and L. F. Bosart, 2003: The extratropical transition and precipitation distribution of Hurricane Floyd (1999). Mon. Wea. Rev., 131, 10631081.

    • Search Google Scholar
    • Export Citation
  • Atallah, E. H., L. F. Bosart, and A. R. Aiyyer, 2007: Precipitation distribution associated with landfalling tropical cyclones over the eastern United States. Mon. Wea. Rev., 135, 21852206.

    • Search Google Scholar
    • Export Citation
  • Blake, E. S., T. B. Kimberlain, R. J. Berg, J. P. Cangialosi, and J. L. Beven III, 2013: Tropical Cyclone Report: Hurricane Sandy (AL182012). Tech. Rep. AL182012, NOAA/National Hurricane Center, 157 pp. [Available online at http://www.nhc.noaa.gov/data/tcr/AL182012_Sandy.pdf.]

  • Bosart, L. F., 1999: Observed cyclone life cycles. The Life Cycles of Extratropical Cyclones, M. A. Shapiro and S. Grønås, Eds., Amer. Meteor. Soc., 187–213.

  • Bosart, L. F., and F. H. Carr, 1978: A case study of excessive rainfall centered around Wellsville, New York, 20–21 June 1972. Mon. Wea. Rev., 106, 348362.

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., and D. B. Dean, 1991: The Agnes rainstorm of June 1972: Surface feature evolution culminating in inland storm redevelopment. Wea. Forecasting, 6, 515537.

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., and G. M. Lackmann, 1995: Postlandfall tropical cyclone reintensification in a weakly baroclinic environment: A case study of Hurricane David (September 1979). Mon. Wea. Rev., 123, 32683291.

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., A. C. Wasula, W. H. Drag, and K. W. Meier, 2008: Strong surface fronts over sloping terrain and coastal plains. Synoptic-Dynamic Meteorology and Weather Analysis and Forecasting: A Tribute to Fred Sanders, Meteor. Monogr., No. 55, Amer. Meteor. Soc., 3586.

  • Browning, K. A., 2004: The sting at the end of the tail: Damaging winds associated with extratropical cyclones. Quart. J. Roy. Meteor. Soc., 130, 375399.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., G. Vaughan, and P. Panagi, 1998: Analysis of an ex-tropical cyclone after reintensifying as a warm-core extratropical cyclone. Quart. J. Roy. Meteor. Soc., 124, 23292356.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and R. Rotunno, 2009a: Evaluation of an analytical model for the maximum intensity of tropical cyclones. J. Atmos. Sci., 66, 30423060.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and R. Rotunno, 2009b: The maximum intensity of tropical cyclones in axisymmetric numerical model simulations. Mon. Wea. Rev., 137, 17701789.

    • Search Google Scholar
    • Export Citation
  • Cordeira, J. M., and L. F. Bosart, 2011: Cyclone interactions and evolutions during the “perfect storms” of late October and early November 1991. Mon. Wea. Rev., 139, 16831707.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and M. L. Weisman, 1994: Balanced dynamics of mesoscale vortices produced in simulated convective systems. J. Atmos. Sci., 51, 20052030.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and T. J. Galarneau Jr., 2009: The vertical structure of mesoscale convective vortices. J. Atmos. Sci., 66, 686704.

  • Davis, C. A., and Coauthors, 2004: The Bow Echo and MCV Experiment: Observations and opportunities. Bull. Amer. Meteor. Soc., 85, 10751093.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., W. Wang, J. Dudhia, and R. Torn, 2010: Does increased horizontal resolution improve hurricane wind forecasts? Wea. Forecasting, 25, 18261841.

    • Search Google Scholar
    • Export Citation
  • desJardins, M. L., K. F. Brill, and S. S. Schotz, 1991: Use of GEMPAK on UNIX workstations. Preprints, Seventh Int. Conf. on Interactive Information and Processing Systems for Meteorology, Oceanography, and Hydrology, New Orleans, LA, Amer. Meteor. Soc., 449453.

  • Dickinson, M. J., L. F. Bosart, W. E. Bracken, G. J. Hakim, D. M. Schultz, M. A. Bedrick, and K. R. Tyle, 1997: The March 1993 superstorm cyclogenesis: Incipient phase synoptic- and convective-scale flow interaction and model performance. Mon. Wea. Rev., 125, 30413072.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., M. T. Montgomery, and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys., 9, 55875646.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Eliassen, A., 1951: Slow thermally or frictionally controlled meridional circulation in a circular vortex. Astrophys. Norv., 5, 1860.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part II: Steady-state maintenance. J. Atmos. Sci., 43, 585604.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1997: Some aspects of hurricane inner-core dynamics and energetics. J. Atmos. Sci., 54, 10141026.

  • Evans, J. L., and R. E. Hart, 2003: Objective indicators of the life cycle evolution of extratropical transition for Atlantic tropical cyclones. Mon. Wea. Rev., 131, 909925.

    • Search Google Scholar
    • Export Citation
  • Foley, G. R., and B. N. Hanstrum, 1994: The capture of tropical cyclones by cold fronts off the west coast of Australia. Wea. Forecasting, 9, 577592.

    • Search Google Scholar
    • Export Citation
  • Grønås, S., 1995: The seclusion intensification of the New Year's day storm 1992. Tellus, 47A, 733746.

  • Grønås, S., N. G. Kvamstø, and E. Raustein, 1994: Numerical simulation of the northern Germany storm of 27–28 August 1989. Tellus, 46A, 635650.

    • Search Google Scholar
    • Export Citation
  • Harr, P. A., and R. L. Elsberry, 2000: Extratropical transition of tropical cyclones over the western North Pacific. Part I: Evolution of structural characteristics during the transition process. Mon. Wea. Rev., 128, 26132633.

    • Search Google Scholar
    • Export Citation
  • Hart, R. E., 2003: A cyclone phase space derived from thermal wind and thermal asymmetry. Mon. Wea. Rev., 131, 585616.

  • Haynes, P. H., and M. E. McIntyre, 1987: On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forces. J. Atmos. Sci., 44, 828841.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. T. Montgomery, and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61, 12091232.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and F. P. Bretherton, 1972: Atmospheric frontogenesis models: Mathematical formulation and solution. J. Atmos. Sci., 29, 1136.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., and Coauthors, 2003: The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions. Wea. Forecasting, 18, 10521092.

    • Search Google Scholar
    • Export Citation
  • Keyser, D., 1986: Atmospheric fronts: An observational perspective. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 216–258.

  • Kitabatake, N., 2008: Extratropical transition of tropical cyclones in the western North Pacific: Their frontal evolution. Mon. Wea. Rev., 136, 20662090.

    • Search Google Scholar
    • Export Citation
  • Klein, P. M., P. A. Harr, and R. L. Elsberry, 2000: Extratropical transition of western North Pacific tropical cyclones: An overview and conceptual model of the transformation stage. Wea. Forecasting, 15, 373396.

    • Search Google Scholar
    • Export Citation
  • Knabb, R. D., 2013: Hurricane Sandy: Hurricane wind and storm surge impacts. Town Hall Meeting: Hurricane and Post-Tropical Cyclone Sandy: Predictions, Warnings, Societal Impacts and Responses, Austin, TX, Amer. Meteor. Soc. [Available online at https://ams.confex.com/ams/93Annual/recordingredirect.cgi/id/23245.]

  • Kurihara, Y., 1975: Budget analysis of a tropical cyclone simulated in an axisymmetric numerical model. J. Atmos. Sci., 32, 2559.

  • Landsea, C., and Coauthors, 2004: The Atlantic hurricane database reanalysis project: Documentation for the 1851–1910 alterations and additions to the HURDAT database. Hurricanes and Typhoons: Past, Present, and Future, R. J. Murname and K.-B. Liu, Eds., Columbia University Press, 177–221.

  • Molinari, J., D. Vollaro, and S. Skubis, 1993: Application of the Eliassen balanced model to real-data tropical cyclones. Mon. Wea. Rev., 121, 24092419.

    • Search Google Scholar
    • Export Citation
  • Möller, J. D., and R. K. Smith, 1994: The development of potential vorticity in a hurricane-like vortex. Quart. J. Roy. Meteor. Soc., 120, 12551265.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. K. Smith, 2012: Paradigms for tropical cyclone intensification. Tropical Cyclone Research Rep. 1, Meteorological Institute, Ludwig Maximilians University of Munich, 29 pp.

  • Neiman, P. J., and M. A. Shapiro, 1993: The life cycle of an extratropical marine cyclone. Part I: Frontal-cyclone evolution and thermodynamic air–sea interaction. Mon. Wea. Rev., 121, 21532176.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., M. A. Shapiro, and L. S. Fedor, 1993: The life cycle of an extratropical marine cyclone. Part II: Mesoscale structure and diagnostics. Mon. Wea. Rev., 121, 21772199.

    • Search Google Scholar
    • Export Citation
  • Palmén, E., 1958: Vertical circulation and release of kinetic energy during the development of hurricane Hazel into an extratropical storm. Tellus, 10, 123.

    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., and H. E. Willoughby, 2009: Diabatically induced secondary flows in tropical cyclones. Part I: Quasi-steady forcing. Mon. Wea. Rev., 137, 805821.

    • Search Google Scholar
    • Export Citation
  • Posselt, D. J., and J. E. Martin, 2004: The effect of latent heat release on the evolution of a warm occluded thermal structure. Mon. Wea. Rev., 132, 578599.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., C. López-Carrillo, and L. L. Cavazos, 1998: Case studies of developing East Pacific easterly waves. Quart. J. Roy. Meteor. Soc., 124, 20052034.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., Y.-H. Kuo, and S. Low-Nam, 1994: An adiabatic simulation of the ERICA IOP 4 storm: An example of quasi-ideal frontal cyclone development. Mon. Wea. Rev., 122, 26882708.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., and B. T. Alworth, 1987: Evolution of potential vorticity in tropical cyclones. Quart. J. Roy. Meteor. Soc., 113, 147162.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., 2001: Reexamining the cold conveyor belt. Mon. Wea. Rev., 129, 22052225.

  • Schultz, D. M., and J. M. Sienkiewicz, 2013: Using frontogenesis to identify sting jets in extratropical cyclones. Wea. Forecasting, 28, 603613.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378394.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and M. Montgomery, 1993: A three-dimensional balance theory for rapidly rotating vortices. J. Atmos. Sci., 50, 33223335.

    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., and D. Keyser, 1990: Fronts, jet streams, and the tropopause. Extratropical Cyclones: The Erik Palmén Memorial Volume, C. W. Newton and E. O. Holopainen, Eds., Amer. Meteor. Soc., 167–191.

  • Simpson, R. H., 1974: The hurricane disaster potential scale. Weatherwise, 27, 169186.

  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 125 pp.

  • Sundqvist, H., 1970: Numerical simulation of the development of tropical cyclones with a ten-level model. Part I. Tellus, 22, 359389.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., and S. C. Jones, 2000: The extratropical transitions of Hurricanes Felix and Iris in 1995. Mon. Wea. Rev., 128, 947972.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., B. J. Hoskins, and M. E. McIntyre, 1993: Two paradigms of baroclinic-wave life-cycle behavior. Quart. J. Roy. Meteor. Soc., 119, 1756.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., 2010: Performance of a mesoscale ensemble Kalman filter (EnKF) during the NOAA high-resolution hurricane test. Mon. Wea. Rev., 138, 43754392.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and C. A. Davis, 2012: The influence of shallow convection on tropical cyclone track forecasts. Mon. Wea. Rev., 140, 21882197.

    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., 2013: Introduction to Sandy and the major impacts. Town Hall Meeting: Hurricane and Post-Tropical Cyclone Sandy: Predictions, Warnings, Societal Impacts and Responses, Austin, TX, Amer. Meteor. Soc. [Available online at https://ams.confex.com/ams/93Annual/recordingredirect.cgi/id/23244.]

  • Wernli, H., 1997: A Lagrangian-based analysis of extratropical cyclones. II: A detailed case study. Quart. J. Roy. Meteor. Soc., 123, 16771706.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., S. Dirren, M. A. Liniger, and M. Zillig, 2002: Dynamical aspects of the life cycle of the winter storm “Lothar” (24–26 December 1999). Quart. J. Roy. Meteor. Soc., 128, 405429.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., Y. Wang, and K. Hamilton, 2011: Improved representation of boundary layer clouds over the southeast Pacific in ARW-WRF using a modified Tiedtke cumulus parameterization scheme. Mon. Wea. Rev., 139, 34893513.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1943 640 114
PDF Downloads 1248 327 38