• Beljaars, A. C. M., 1995: The parametrization of surface fluxes in large-scale models under free convection. Quart. J. Roy. Meteor. Soc., 121, 255270, doi:10.1002/qj.49712152203.

    • Search Google Scholar
    • Export Citation
  • Chassignet, E. P., , H. E. Hurlburt, , O. M. Smedstad, , G. R. Halliwell, , P. J. Hogan, , A. J. Wallcraft, , R. Baraille, , and R. Bleck, 2007: The HYCOM (HYbrid Coordinate Ocean Model) data assimilative system. J. Mar. Syst., 65, 6083, doi:10.1016/j.jmarsys.2005.09.016.

    • Search Google Scholar
    • Export Citation
  • Clark, N. E., , L. Eber, , R. M. Laurs, , J. A. Renner, , and J. F. T. Saur, 1974: Heat exchange between ocean and atmosphere in the eastern North Pacific for 1961–71. NOAA Tech. Rep. NMFS SSRF-682, 108 pp.

  • Fairall, C. W., , E. F. Bradley, , J. E. Hare, , A. A. Grachev, , and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591.

    • Search Google Scholar
    • Export Citation
  • Hazeleger, W., , R. Seager, , M. Visbeck, , N. Naik, , and K. Rodgers, 2001: Impact of the midlatitude storm track on the upper Pacific Ocean. J. Phys. Oceanogr., 31, 616636.

    • Search Google Scholar
    • Export Citation
  • Jin, X., , C. Dong, , J. Kurian, , J. C. McWilliams, , D. B. Chelton, , and Z. Li, 2009: SST–wind interaction in coastal upwelling: Oceanic simulation with empirical coupling. J. Phys. Oceanogr., 39, 29572970.

    • Search Google Scholar
    • Export Citation
  • Josey, S. A., , D. Oakley, , and R. W. Pascal, 1997: On estimating the atmospheric longwave flux at the ocean surface from ship meteorological reports. J. Geophys. Res., 102 (C13), 27 96127 972.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437472.

  • Kubota, M., , A. Kano, , H. Muramatsu, , and H. Tomita, 2003: Intercomparison of various surface latent heat flux fields. J. Climate, 16, 670678.

    • Search Google Scholar
    • Export Citation
  • Kubota, M., , N. Iwabe, , M. F. Cronin, , and H. Tomita, 2008: Surface heat fluxes from the NCEP/NCAR and NCEP/DOE reanalyses at the Kuroshio Extension Observatory buoy site. J. Geophys. Res.,113, C02009, doi:10.1029/2007JC004338.

  • Large, W. G., , and S. Pond, 1982: Sensible and latent heat flux measurements over the ocean. J. Phys. Oceanogr., 12, 464482.

  • Large, W. G., , J. C. McWilliams, , and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363404, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., , A. Adcroft, , C. Hill, , L. Perelman, , and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102 (C3), 57535766.

    • Search Google Scholar
    • Export Citation
  • Pezzi, L. P., , J. Vialard, , K. J. Richards, , C. Menkes, , and D. Anderson, 2004: Influence of ocean-atmosphere coupling on the properties of tropical instability waves. Geophys. Res. Lett., 31, L16306, doi:10.1029/2004GL019995.

    • Search Google Scholar
    • Export Citation
  • Rouault, M., , C. J. C. Reason, , J. R. E. Lutjeharms, , and A. C. M. Beljaars, 2003: Underestimation of latent and sensible heat fluxes above the Agulhas Current in NCEP and ECMWF analyses. J. Climate, 16, 776782.

    • Search Google Scholar
    • Export Citation
  • Seager, R., , M. Blumenthal, , and Y. Kushnir, 1995: An advective atmospheric mixed layer model for ocean modeling purposes: Global simulation of surface heat fluxes. J. Climate, 8, 19511964.

    • Search Google Scholar
    • Export Citation
  • Small, R. J., and Coauthors, 2008: Air–sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans, 45, 274319.

  • Smith, S. D., 1988: Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J. Geophys. Res., 93 (C12), 15 46715 472.

    • Search Google Scholar
    • Export Citation
  • Talley, L., , G. Pickard, , W. Emery, , and J. Swift, 2011: Descriptive Physical Oceanography: An Introduction. Academic Press, 555 pp.

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Yu, L., , and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 527–539.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 74 74 13
PDF Downloads 61 61 9

CheapAML: A Simple, Atmospheric Boundary Layer Model for Use in Ocean-Only Model Calculations

View More View Less
  • 1 Department of Earth, Ocean, and Atmospheric Science, The Florida State University, Tallahassee, Florida
© Get Permissions
Restricted access

Abstract

A model of the marine atmospheric boundary layer is developed for ocean-only modeling in order to better represent air–sea exchanges. This model computes the evolution of the atmospheric boundary layer temperature and humidity using a prescribed wind field. These quantities react to the underlying ocean through turbulent and radiative fluxes. With two examples, the authors illustrate that this formulation is accurate for regional and global modeling purposes and that turbulent fluxes are well reproduced in test cases when compared to reanalysis products. The model builds upon and is an extension of Seager et al.

Corresponding author address: Bruno Deremble, The Florida State University, 117 N. Woodward Ave., Tallahassee, FL 32306-4320. E-mail: bderemble@fsu.edu

Abstract

A model of the marine atmospheric boundary layer is developed for ocean-only modeling in order to better represent air–sea exchanges. This model computes the evolution of the atmospheric boundary layer temperature and humidity using a prescribed wind field. These quantities react to the underlying ocean through turbulent and radiative fluxes. With two examples, the authors illustrate that this formulation is accurate for regional and global modeling purposes and that turbulent fluxes are well reproduced in test cases when compared to reanalysis products. The model builds upon and is an extension of Seager et al.

Corresponding author address: Bruno Deremble, The Florida State University, 117 N. Woodward Ave., Tallahassee, FL 32306-4320. E-mail: bderemble@fsu.edu
Save