• Abarca, S. F., , K. L. Corbosiero, , and D. Vollaro, 2011: The worldwide lightning location network and convective activity in tropical cyclones. Mon. Wea. Rev., 139, 175191.

    • Search Google Scholar
    • Export Citation
  • Berdeklis, P., , and R. List, 2001: The ice crystal–graupel collision charging mechanism of thunderstorm electrification. J. Atmos. Sci., 58, 27512770.

    • Search Google Scholar
    • Export Citation
  • Black, M. L., , R. W. Burpee, , and F. D. Marks Jr., 1996: Vertical motion characteristics of tropical cyclones determined with airborne Doppler radial velocities. J. Atmos. Sci., 53, 18871909.

    • Search Google Scholar
    • Export Citation
  • Black, P. G., , R. W. Burpee, , N. M. Dorst, , and W. L. Adams, 1986: Appearance of the sea surface in tropical cyclones. Wea. Forecasting, 1, 102107.

    • Search Google Scholar
    • Export Citation
  • Black, R. A., , and J. Hallett, 1986: Observations of the distribution of ice in hurricanes. J. Atmos. Sci., 43, 802822.

  • Boccippio, D. J., , W. J. Koshak, , and R. J. Blakeslee, 2002: Performance assessment of the Optical Transient Detector and Lightning Imaging Sensor. Part I: Predicted diurnal variability. J. Atmos. Oceanic Technol., 19, 13181332.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., , and E. J. Zipser, 1999: Relationships between tropical cyclone intensity and satellite-based indicators of inner core convection: 85-GHz ice-scattering signature and lightning. Mon. Wea. Rev., 127, 103123.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., , and E. J. Zipser, 2002: Reflectivity, ice scattering, and lightning characteristics of hurricane eyewalls and rainbands. Part II: Intercomparison of observations. Mon. Wea. Rev., 130, 785801.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., , and M. Wingo, 2009: Comparison of TRMM rain-rate retrievals in tropical cyclones. J. Meteor. Soc. Japan, 87, 369380.

  • Cecil, D. J., , E. J. Zipser, , and S. W. Nesbitt, 2002: Reflectivity, ice scattering, and lightning characteristics of hurricane eyewalls and rainbands. Part I: Quantitative description. Mon. Wea. Rev., 130, 769784.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., , S. J. Goodman, , D. J. Boccippio, , and E. J. Zipser, 2005: Three years of TRMM precipitation features. Part I: Radar, radiometric, and lightning characteristics. Mon. Wea. Rev., 133, 543566.

    • Search Google Scholar
    • Export Citation
  • Christian, H. J., , R. J. Blakeslee, , and S. J. Goodman, 1992: Lightning Imaging Sensor (LIS) for the Earth Observing System. NASA Tech. Memo. 4350, MSFC, Huntsville, AL, 36 pp.

  • Christian, H. J., and Coauthors, 1999: The Lightning Imaging Sensor. Proc. 11th Int. Conf. on Atmospheric Electricity, Huntsville, AL, National Aeronautics and Space Administration, 746–749.

  • DeMaria, M., , R. DeMaria, , J. Knaff, , and D. Molenar, 2012: Tropical cyclone lightning and rapid intensity change. Mon. Wea. Rev., 140, 18281842.

    • Search Google Scholar
    • Export Citation
  • Guimond, S. R., , G. M. Heymsfield, , and F. J. Turk, 2010: Multiscale observations of Hurricane Dennis (2005): The effects of hot towers on rapid intensification. J. Atmos. Sci., 67, 633654.

    • Search Google Scholar
    • Export Citation
  • Hence, D. A., , and R. A. Houze Jr., 2011: Vertical structure of hurricane eyewalls as seen by the TRMM precipitation radar. J. Atmos. Sci., 68, 16371652.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., , M. T. Montgomery, , and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of tropical cyclone Diana (1984). J. Atmos. Sci., 61, 12091232.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., , L. Tian, , A. J. Heymsfield, , L. Li, , and S. Guimond, 2010: Characteristics of deep tropical and subtropical convection from nadir-viewing high-altitude airborne Doppler radar. J. Atmos. Sci., 67, 285308.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2010: Clouds in tropical cyclones. Mon. Wea. Rev., 138, 293344.

  • Iguchi, T., , T. Kozu, , J. Kwiatkowski, , R. Meneghini, , J. Awaka, , and K. Okamoto, 2009: Uncertainties in the rain profiling algorithm for the TRMM Precipitation Radar. J. Meteor. Soc. Japan, 87A, 130.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., 2012: The relationship between tropical cyclone intensity change and the strength of inner core convection. Mon. Wea. Rev., 140, 11641176.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., , J. B. Halverson, , J. Simpson, , and E. J. Zipser, 2008: Hurricane “rainfall potential” derived from satellite observations aids overland rainfall prediction. J. Appl. Meteor. Climatol., 47, 944959.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., , C. Liu, , and E. J. Zipser, 2011: A TRMM-based tropical cyclone cloud and precipitation feature database. J. Appl. Meteor. Climatol., 50, 12551274.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., , and M. A. LeMone, 1989: Vertical velocity characteristics of oceanic convection. J. Atmos. Sci., 46, 621640.

  • Jorgensen, D. P., , E. J. Zipser, , and M. A. LeMone, 1985: Vertical motions in intense hurricanes. J. Atmos. Sci., 42, 839856.

  • Kelley, O. A., , J. Stout, , and J. B. Halverson, 2004: Tall precipitation cells in tropical cyclone eyewalls are associated with tropical cyclone intensification. Geophys. Res. Lett., 31, L24112, doi:10.1029/2004GL021616.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., , W. S. Olson, , and L. Giglio, 1996: A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors. IEEE Trans. Geosci. Remote Sens., 34, 12131232.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., , and E. J. Zipser, 1980: Cumulonimbus vertical velocity events in GATE. Part I: Diameters, intensity, and mass flux distributions. J. Atmos. Sci., 37, 24442457.

    • Search Google Scholar
    • Export Citation
  • Liu, C., , E. J. Zipser, , D. J. Cecil, , S. W. Nesbitt, , and S. Sherwood, 2008: A cloud and precipitation feature database from nine years of TRMM observations. J. Appl. Meteor. Climatol., 47, 27122728.

    • Search Google Scholar
    • Export Citation
  • Liu, C., , D. Cecil, , and E. J. Zipser, 2011: Relationships between lightning flash rates and passive microwave brightness temperatures at 85 and 37 GHz over the tropics and subtropics. J. Geophys. Res., 116, D23108, doi:10.1029/2011JD016463.

    • Search Google Scholar
    • Export Citation
  • Liu, C., , D. Cecil, , E. J. Zipser, , K. Kronfeld, , and R. Robertson, 2012: Relationships between lightning flash rates and radar reflectivity vertical structures in thunderstorms over the tropics and subtropics. J. Geophys. Res., 117, D06212, doi:10.1029/2011JD017123.

    • Search Google Scholar
    • Export Citation
  • Lonfat, M., , F. D. Marks, , and S. S. Chen, 2004: Precipitation distribution in tropical cyclones using the tropical rainfall measuring mission (TRMM) microwave imager: A global perspective. Mon. Wea. Rev., 132, 16451660.

    • Search Google Scholar
    • Export Citation
  • Lucas, C., , E. J. Zipser, , and M. A. LeMone, 1994: Vertical velocity in oceanic convection off tropical Australia. J. Atmos. Sci., 51, 31833193.

    • Search Google Scholar
    • Export Citation
  • McGaughey, G., , E. J. Zipser, , R. W. Spencer, , and R. E. Hood, 1996: High-resolution passive microwave observations of convective systems over the tropical Pacific Ocean. J. Appl. Meteor., 35, 19211947.

    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., , and E. J. Zipser, 1996a: Defining mesoscale convective systems by their 85-GHz ice scattering signatures. Bull. Amer. Meteor. Soc., 77, 11791189.

    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., , and E. J. Zipser, 1996b: Mesoscale convective systems defined by their 85-GHz ice scattering signature: Size and intensity comparison over tropical oceans and continents. Mon. Wea. Rev., 124, 24172437.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., , P. K. Moore, , V. P. Idone, , R. W. Henderson, , and A. B. Saljoughy, 1994: Cloud-to-ground lightning in Hurricane Andrew. J. Geophys. Res., 99, 16 66516 676.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., , P. K. Moore, , and V. P. Idone, 1999: Convective structure of hurricanes as revealed by lightning locations. Mon. Wea. Rev., 127, 520534.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., , and R. K. Smith, 2011: Paradigms for tropical-cyclone intensification. Quart. J. Roy. Meteor. Soc., 137, 131.

  • Montgomery, M. T., , M. E. Nicholls, , T. A. Cram, , and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355386.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., , and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16, 14561475.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., , E. J. Zipser, , and D. J. Cecil, 2000: A census of precipitation features in the tropics using TRMM: Radar, ice scattering, and lightning observations. J. Climate, 13, 40874106.

    • Search Google Scholar
    • Export Citation
  • Rakov, V. A., , and M. A. Uman, 2003: Lightning: Physics and Effects. Cambridge University Press, 687 pp.

  • Rao, G. V., , and P. D. MacArthur, 1994: The SSM/I estimated rainfall amounts of tropical cyclones and their potential in predicting the cyclone intensity changes. Mon. Wea. Rev., 122, 15681574.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., , M. Eastin, , and J. F. Gamache, 2009: Rapidly intensifying Hurricane Guillermo (1997). Part I: Low-wavenumber structure and evolution. Mon. Wea. Rev., 137, 603631.

    • Search Google Scholar
    • Export Citation
  • Rodgers, E. B., , R. F. Adler, , and H. F. Pierce, 2001: Contribution of tropical cyclones to the North Atlantic climatological rainfall as observed from satellites. J. Appl. Meteor., 40, 17851800.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., 2010: Convective-scale structure and evolution during a high-resolution simulation of tropical cyclone rapid intensification. J. Atmos. Sci., 67, 4470.

    • Search Google Scholar
    • Export Citation
  • Samsury, C. E., , and R. E. Orville, 1994: Cloud-to-ground lightning in tropical cyclones: A study of Hurricanes Hugo (1989) and Jerry (1989). Mon. Wea. Rev., 122, 18871896.

    • Search Google Scholar
    • Export Citation
  • Saunders, C., 2008: Charge separation mechanisms in clouds. Space Sci. Rev., 137, 335353.

  • Schubert, W. H., , and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 16871697.

  • Simpson, J., , R. F. Adler, , and G. R. North, 1988: A proposed Tropical Rainfall Measuring Mission (TRMM) satellite. Bull. Amer. Meteor. Soc., 69, 278295.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., , H. M. Goodman, , and R. E. Hood, 1989: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6, 254273.

    • Search Google Scholar
    • Export Citation
  • Szoke, E. J., , E. J. Zipser, , and D. P. Jorgensen, 1986: A radar study of convective cells in mesoscale systems in GATE. Part I: Vertical profile statistics and comparison with hurricanes. J. Atmos. Sci., 43, 182198.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 1978: Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35, 15361548.

  • Takahashi, T., , and K. Miyawaki, 2002: Reexamination of riming electrification in a wind tunnel. J. Atmos. Sci., 59, 10181025.

  • Toracinta, E. R., , D. J. Cecil, , E. J. Zipser, , and S. W. Nesbitt, 2002: Radar, passive microwave, and lightning characteristics of precipitating systems in the tropics. Mon. Wea. Rev., 130, 802824.

    • Search Google Scholar
    • Export Citation
  • Wingo, M. T., , and D. J. Cecil, 2010: Effects of vertical wind shear on tropical cyclone precipitation. Mon. Wea. Rev., 138, 645662.

  • Xu, W., , E. J. Zipser, , C. Liu, , and H. Jiang, 2010: On the relationships between lightning frequency and thundercloud parameters of regional precipitation systems. J. Geophys. Res., 115, D12203, doi:10.1029/2009JD013385.

    • Search Google Scholar
    • Export Citation
  • Yokoyama, C., , and Y. N. Takayabu, 2008: A statistical study on rain characteristics of tropical cyclones using TRMM satellite data. Mon. Wea. Rev., 136, 38483862.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., , and M. A. LeMone, 1980: Cumulonimbus vertical velocity events in GATE. Part II: Synthesis and model core structure. J. Atmos. Sci., 37, 24582469.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 121 121 14
PDF Downloads 119 119 26

Convective and Rainfall Properties of Tropical Cyclone Inner Cores and Rainbands from 11 Years of TRMM Data

View More View Less
  • 1 Department of Earth & Environment, Florida International University, Miami, Florida
  • | 2 Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah
  • | 3 Earth System Science Center, University of Alabama in Huntsville, Huntsville, Alabama
© Get Permissions
Restricted access

Abstract

Convective and rainfall properties of tropical cyclones (TCs) are statistically quantified by using Tropical Rainfall Measuring Mission (TRMM) data from December 1997 to December 2008. A semimanual method is used to divide the TC raining area into inner core (IC), inner rainband (IB), and outer rainband (OB) regions. Precipitation features (PFs) within these regions are compared for their convective vigor and rainfall characteristics based on passive microwave, infrared, radar, and lightning properties. Strong convective signatures are generally found more often in precipitation features in the IC region, less often in the IB region, and least often in the OB region when examining features with sizes greater than 1000 km2. However, at the very strong end of the convective spectrum, the magnitude of ice scattering signatures in OB features tends to be comparable and even stronger than that in IC features. The flash density when normalized by the raining area is about 2–3 times higher in IC features than that in OB features for all TCs except for category-1–2 hurricanes, in which the flash density is comparable for IC and OB features. The flash count per raining area in IB features is a factor of 2 (4) lower than that in OB (IC) features for all TC intensity categories on average. This confirms the bimodal radial distribution of flash density as suggested by previous studies. However, instead of a weaker maximum in the IC region and a stronger maximum in the OB region, this study finds a stronger maximum in the IC region and a weaker maximum in the OB region.

Corresponding author address: Dr. Haiyan Jiang, Department of Earth & Environment, Florida International University, 11200 SW 8th Street, PC-342B, Miami, FL 33199. E-mail: haiyan.jiang@fiu.edu

Abstract

Convective and rainfall properties of tropical cyclones (TCs) are statistically quantified by using Tropical Rainfall Measuring Mission (TRMM) data from December 1997 to December 2008. A semimanual method is used to divide the TC raining area into inner core (IC), inner rainband (IB), and outer rainband (OB) regions. Precipitation features (PFs) within these regions are compared for their convective vigor and rainfall characteristics based on passive microwave, infrared, radar, and lightning properties. Strong convective signatures are generally found more often in precipitation features in the IC region, less often in the IB region, and least often in the OB region when examining features with sizes greater than 1000 km2. However, at the very strong end of the convective spectrum, the magnitude of ice scattering signatures in OB features tends to be comparable and even stronger than that in IC features. The flash density when normalized by the raining area is about 2–3 times higher in IC features than that in OB features for all TCs except for category-1–2 hurricanes, in which the flash density is comparable for IC and OB features. The flash count per raining area in IB features is a factor of 2 (4) lower than that in OB (IC) features for all TC intensity categories on average. This confirms the bimodal radial distribution of flash density as suggested by previous studies. However, instead of a weaker maximum in the IC region and a stronger maximum in the OB region, this study finds a stronger maximum in the IC region and a weaker maximum in the OB region.

Corresponding author address: Dr. Haiyan Jiang, Department of Earth & Environment, Florida International University, 11200 SW 8th Street, PC-342B, Miami, FL 33199. E-mail: haiyan.jiang@fiu.edu
Save