• Barnes, G. M., 1995: Updraft evolution: A perspective from cloud base. Mon. Wea. Rev., 123, 26932715.

  • Barnes, S. L., 1970: Some aspects of a severe, right-moving thunderstorm deduced from mesonetwork rawinsonde observations. J. Atmos. Sci., 27, 634648.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., 1986: Visual aspects of the flanking line in severe thunderstorms. Mon. Wea. Rev., 114, 788795.

  • Bluestein, H. B., , and D. Hazen, 1989: Doppler-radar analysis of a tropical cyclone over land: Hurricane Alicia (1983) in Oklahoma. Mon. Wea. Rev., 117, 25942611.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., , S. D. Hrebenach, , C.-F. Chang, , and E. A. Brandes, 1994: Synthetic dual-Doppler analysis of mesoscale convective systems. Mon. Wea. Rev., 122, 21052124.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., 1978: Mesocyclone evolution and tornadogenesis: Some observations. Mon. Wea. Rev., 106, 9951011.

  • Brandes, E. A., 1984: Relationships between radar-derived thermodynamic variables and tornadogenesis. Mon. Wea. Rev., 112, 10331052.

  • Bunkers, M. J., , B. A. Klimowski, , J. W. Zeitler, , R. L. Thompson, , and M. L. Weisman, 2000: Predicting supercell motion using a new hodograph technique. Wea. Forecasting, 15, 6179.

    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., , M. R. Hjelmfelt, , and P. L. Smith, 2006: An observational examination of long-lived supercells. Part I: Characteristics, evolution, and demise. Wea. Forecasting, 21, 673688.

    • Search Google Scholar
    • Export Citation
  • Cai, H., , and R. M. Wakimoto, 2001: Retrieved pressure field and its influence on the propagation of a supercell thunderstorm. Mon. Wea. Rev., 129, 26952713.

    • Search Google Scholar
    • Export Citation
  • Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. Rev., 87, 367374.

  • Crook, A., 1994: Numerical simulations initialized with radar-derived winds. Part I: Simulated data experiments. Mon. Wea. Rev., 122, 11891203.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 1984: Streamwise vorticity: The origin of updraft rotation in supercell storms. J. Atmos. Sci., 41, 29913006.

  • Davies-Jones, R. P., , and H. E. Brooks, 1993: Mesocyclogenesis from a theoretical perspective. The Tornado: Its Structure, Dynamics, Prediction, and Hazards,Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 105–114.

  • Davies-Jones, R. P., , R. J. Trapp, , and H. B. Bluestein, 2001: Tornadoes and tornadic storms. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 167–221.

  • Doviak, R. J., , P. S. Ray, , R. G. Strauch, , and L. J. Miller, 1976: Error estimation in wind fields from dual Doppler radar measurements. J. Appl. Meteor., 15, 868878.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., , and H. B. Bluestein, 1997: The Arcadia, Oklahoma, storm of 17 May 1981: Analysis of a supercell during tornadogenesis. Mon. Wea. Rev., 125, 25622582.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., , F. Zhang, , L. J. Wicker, , C. Snyder, , and N. A. Crook, 2004: Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell: Ensemble Kalman filter experiments. Mon. Wea. Rev., 132, 19822005.

    • Search Google Scholar
    • Export Citation
  • Droegemeier, K. K., , S. M. Lazarus, , and R. Davies-Jones, 1993: The influence of helicity on numerically simulated convective storms. Mon. Wea. Rev., 121, 20052029.

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., , and M. C. Link, 2009: Miniature supercells in an offshore outer rainband of Hurricane Ivan (2004). Mon. Wea. Rev., 137, 20812104.

    • Search Google Scholar
    • Export Citation
  • Gal-Chen, T., 1978: A method for the initialization of the anelastic equations: Implications for matching models with observations. Mon. Wea. Rev., 106, 587606.

    • Search Google Scholar
    • Export Citation
  • Gal-Chen, T., , and R. A. Kropfli, 1984: Buoyancy and pressure perturbations derived from dual-Doppler radar observations of the planetary boundary layer: Applications for matching models with observations. J. Atmos. Sci., 41, 30073020.

    • Search Google Scholar
    • Export Citation
  • Gilmore, M. S., , and L. J. Wicker, 2002: Influences of the local environment on supercell cloud-to-ground lightning, radar characteristics, and severe weather on 2 June 1995. Mon. Wea. Rev., 130, 23492372.

    • Search Google Scholar
    • Export Citation
  • Hane, C. E., , and B. C. Scott, 1978: Temperature and pressure perturbations within convective clouds derived from detailed air motion information: Preliminary testing. Mon. Wea. Rev., 106, 654661.

    • Search Google Scholar
    • Export Citation
  • Hane, C. E., , and P. S. Ray, 1985: Pressure and buoyancy fields derived from Doppler radar data in a tornadic thunderstorm. J. Atmos. Sci., 42, 1835.

    • Search Google Scholar
    • Export Citation
  • Hane, C. E., , R. B. Wilhelmson, , and T. Gal-Chen, 1981: Retrieval of thermodynamic variables within deep convective clouds: Experiments in three dimensions. Mon. Wea. Rev., 109, 564576.

    • Search Google Scholar
    • Export Citation
  • Hayes, J. L., 2009: Service assessment: Super Tuesday tornado outbreak of February 5–6, 2008. National Weather Service, 48 pp.

  • Kirkpatrick, C., , E. W. McCaul, , and C. Cohen, 2009: Variability of updraft and downdraft characteristics in a large parameter space study of convective storms. Mon. Wea. Rev., 137, 15501561.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., , R. B. Wilhelmson, , and P. S. Ray, 1981: Observed and numerically simulated structure of a mature supercell thunderstorm. J. Atmos. Sci., 38, 15581580.

    • Search Google Scholar
    • Export Citation
  • Klimowski, B. A., , and J. D. Marwitz, 1992: The synthetic dual-Doppler analysis technique. J. Atmos. Oceanic Technol., 9, 728745.

  • Klimowski, B. A., , M. J. Bunkers, , M. R. Hjelmfelt, , and J. N. Covert, 2003: Severe convective windstorms over the northern high plains of the United States. Wea. Forecasting, 18, 502519.

    • Search Google Scholar
    • Export Citation
  • Kraus, M. J., 1974: Doppler radar investigation of flow patterns within thunderstorms. AFCRL Environmental Research Paper 481, Hanscom AFM, MA, AFCRL-TR-74-0290, 86 pp.

  • Laird, N. F., , L. J. Miller, , and D. A. R. Kristovich, 2001: Synthetic dual-Doppler analysis of a winter mesoscale vortex. Mon. Wea. Rev., 129, 312331.

    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., 1976: The flanking line, a severe thunderstorm intensification source. J. Atmos. Sci., 33, 686694.

  • Lemon, L. R., , and C. A. Doswell, 1979: Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev., 107, 11841197.

    • Search Google Scholar
    • Export Citation
  • Lhermitte, R. M., , and L. J. Miller, 1970: Doppler radar methodology for the observations of convective storms. Preprints, 14th Conf. on Radar Meteorology, Tucson, AZ, Amer. Meteor. Soc., 133–138.

  • Markowski, P. M., 2002: Hook echoes and rear-flank downdrafts: A review. Mon. Wea. Rev., 130, 852876.

  • Markowski, P. M., , and Y. P. Richardson, 2008: Tornadogenesis: Our current understanding, forecasting considerations, and questions to guide future research. Atmos. Res., 93, 310.

    • Search Google Scholar
    • Export Citation
  • Matejka, T., , and D. L. Bartels, 1998: The accuracy of vertical air velocities from Doppler radar data. Mon. Wea. Rev., 126, 92117.

  • McCaul, E. W., , and M. L. Weisman, 1996: The dependence of simulated storm structure on variations in the shapes of environment buoyancy and shear profiles. Preprints, 18th Conf. on Severe Local Storms, San Francisco, CA, Amer. Meteor. Soc., 718–722.

  • McCaul, E. W., , and M. L. Weisman, 2001: The sensitivity of simulated supercell structure and intensity to variations in the shapes of environmental buoyancy and shear profiles. Mon. Wea. Rev., 129, 664687.

    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., , and C. Cohen, 2002: The impact on simulated storm structure and intensity of variations in the mixed layer and moist layer depths. Mon. Wea. Rev., 130, 17221748.

    • Search Google Scholar
    • Export Citation
  • Miller, L. J., , and W. Anderson, 1991: Multiple Doppler radar wind synthesis in CEDRIC. CEDRIC manual, Appendix F, NCAR, 12 pp.

  • Miller, L. J., , J. D. Tuttle, , and G. B. Foote, 1990: Precipitation production in a large Montana hailstorm: Airflow and particle growth trajectories. J. Atmos. Sci., 47, 16191646.

    • Search Google Scholar
    • Export Citation
  • Mohr, C. G., , L. J. Miller, , R. L. Vaughan, , and H. W. Frank, 1986: The merger of mesoscale data sets into a common Cartesian format for efficient and systematic analysis. J. Atmos. Oceanic Technol., 3, 143161.

    • Search Google Scholar
    • Export Citation
  • Nelson, S. P., , and N. C. Knight, 1987: The hybrid multicellular–supercellular storm—An efficient hail producer. Part I: An archetypal example. J. Atmos. Sci., 44, 20422059.

    • Search Google Scholar
    • Export Citation
  • O’Brien, J. J., 1970: Alternative solutions to the classical vertical velocity problem. J. Appl. Meteor., 9, 197203.

  • Oye, R., , C. Mueller, , and S. Smith, 1995: Software for radar translation, visualization, editing, and interpolation. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 359–361.

  • Pasken, R., , and Y. J. Lin, 1982: Pressure perturbations within a tornadic storm derived from dual-Doppler wind data. Preprints, 12th Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 257–260.

  • Peace, R. L., , R. A. Brown, , and H. G. Camnitz, 1969: Horizontal motion field observations with a single pulse Doppler radar. J. Atmos. Sci., 26, 10961103.

    • Search Google Scholar
    • Export Citation
  • Ray, P. S., , D. P. Jorgensen, , and S. L. Wang, 1985: Airborne Doppler radar observations of a convective storm. J. Climate Appl. Meteor., 24, 687698.

    • Search Google Scholar
    • Export Citation
  • Roberts, R. D., , and J. W. Wilson, 1995: The genesis of three nonsupercell tornadoes observed with dual-Doppler radar. Mon. Wea. Rev., 123, 34083436.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., , and J. B. Klemp, 1982: The influence of shear-induced pressure gradient on thunderstorm motion. Mon. Wea. Rev., 110, 136151.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., , and J. B. Klemp, 1985: On the rotation and propagation of simulated supercell thunderstorms. J. Atmos. Sci., 42, 271292.

    • Search Google Scholar
    • Export Citation
  • Roux, F., 1985: Retrieval of thermodynamic fields from multiple-Doppler radar data using the equations of motion and thermodynamic equation. Mon. Wea. Rev., 113, 21422157.

    • Search Google Scholar
    • Export Citation
  • Steiger, S. M., , R. E. Orville, , and L. D. Carey, 2007: Total lightning signatures of thunderstorm intensity over North Texas. Part I: Supercells. Mon. Wea. Rev., 135, 32813302.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., 1998: Eta model storm-relative winds associated with tornadic and nontornadic supercells. Wea. Forecasting, 13, 125137.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., , and R. Davies-Jones, 1997: Tornadogenesis with and without a dynamic-pipe effect. J. Atmos. Sci., 54, 113133.

  • Trapp, R. J., , E. D. Mitchell, , G. A. Tipton, , D. W. Effertz, , A. I. Watson, , D. L. Andra, , and M. A. Magsig, 1999: Descending and nondescending tornadic vortex signatures detected by WSR-88Ds. Wea. Forecasting, 14, 625639.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., , and J. B. Klemp, 1984: The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Wea. Rev., 112, 24792498.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., , and R. J. Trapp, 2003: Low-level mesovortices within squall lines and bow echoes. Part I: Overview and dependence on environmental shear. Mon. Wea. Rev., 131, 27792803.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., , and L. Cantrell, 1996: The role of vertical buoyancy distributions in miniature supercells. Preprints, 18th Conf. on Severe Local Storms, San Francisco, CA, Amer. Meteor. Soc., 225–229.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 46 46 7
PDF Downloads 34 34 4

An Analysis of Cold Season Supercell Storms Using the Synthetic Dual-Doppler Technique

View More View Less
  • 1 Department of Atmospheric Science, University of Alabama in Huntsville, Hunstville, Alabama
© Get Permissions
Restricted access

Abstract

Cold season tornadic outbreaks occur with regularity in the southeastern United States; however, detailed analyses of parent supercell storms in the cold season environment (often low CAPE, high shear) are scarce. This is often because storms do not always move close enough to radars for a comprehensive single-Doppler analysis and significant topography or trees in the Southeast make it difficult for mobile radars to operate, thus limiting dual-Doppler coverage. However, during the Super Tuesday tornado outbreak of 5–6 February 2008, two tornadic supercell storms passed within 30–40 km of the Weather Surveillance Radar-1988 Doppler (WSR-88D) sites in Memphis and Nashville, Tennessee (KNQA and KOHX, respectively). The relative steadiness of these storms during passage, along with the large motion vector (from the southwest at 20–25 m s−1), allowed the application of a synthetic dual-Doppler (SDD) analysis. As such, a detailed analysis of these storms was completed, including examinations of low-level circulations, updraft strength and location, as well as retrievals and evaluations of perturbation pressure and the vertical pressure gradient. This study presents one of the first comprehensive analyses of cold season supercells using only one Doppler radar. Additionally, the relative success and failures of using the SDD technique on supercell storms are discussed. Major findings for the primary case include the updraft maximizing at a very low height (3.0 km AGL), and weak pressure forcing within the rear flank resulting in a nonexistent rear-flank downdraft (RFD).

Corresponding author address: Todd A. Murphy, Department of Atmospheric Science, University of Alabama in Huntsville, NSSTC, 320 Sparkman Dr., Huntsville, AL 35805. E-mail: todd.murphy@nsstc.uah.edu

Abstract

Cold season tornadic outbreaks occur with regularity in the southeastern United States; however, detailed analyses of parent supercell storms in the cold season environment (often low CAPE, high shear) are scarce. This is often because storms do not always move close enough to radars for a comprehensive single-Doppler analysis and significant topography or trees in the Southeast make it difficult for mobile radars to operate, thus limiting dual-Doppler coverage. However, during the Super Tuesday tornado outbreak of 5–6 February 2008, two tornadic supercell storms passed within 30–40 km of the Weather Surveillance Radar-1988 Doppler (WSR-88D) sites in Memphis and Nashville, Tennessee (KNQA and KOHX, respectively). The relative steadiness of these storms during passage, along with the large motion vector (from the southwest at 20–25 m s−1), allowed the application of a synthetic dual-Doppler (SDD) analysis. As such, a detailed analysis of these storms was completed, including examinations of low-level circulations, updraft strength and location, as well as retrievals and evaluations of perturbation pressure and the vertical pressure gradient. This study presents one of the first comprehensive analyses of cold season supercells using only one Doppler radar. Additionally, the relative success and failures of using the SDD technique on supercell storms are discussed. Major findings for the primary case include the updraft maximizing at a very low height (3.0 km AGL), and weak pressure forcing within the rear flank resulting in a nonexistent rear-flank downdraft (RFD).

Corresponding author address: Todd A. Murphy, Department of Atmospheric Science, University of Alabama in Huntsville, NSSTC, 320 Sparkman Dr., Huntsville, AL 35805. E-mail: todd.murphy@nsstc.uah.edu
Save