• Anderson, J. L., 2007: Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter. Physica D, 230, 99111.

    • Search Google Scholar
    • Export Citation
  • Belo Pereira, M., , and L. Berre, 2006: The use of ensemble approach to study the background error covariances in a global NWP model. Mon. Wea. Rev., 134, 24662489.

    • Search Google Scholar
    • Export Citation
  • Berre, L., , and G. Desroziers, 2010: Filtering of background error variances and correlations by local spatial averaging: A review. Mon. Wea. Rev., 138, 36933720.

    • Search Google Scholar
    • Export Citation
  • Berre, L., , E. Stefanesku, , and M. Belo Pereira, 2006: The representation of the analysis effect in three error simulation techniques. Tellus, 58A, 196209.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., , and D. Hodyss, 2007: Flow adaptive moderation of spurious ensemble correlations and its use in ensemble based data assimilation. Quart. J. Roy. Meteor. Soc., 133, 20292044.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., , and D. Hodyss, 2009a: Ensemble covariances adaptively localized with ECO-RAP. Part 1: Tests on simple error models. Tellus, 61, 8496.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., , and D. Hodyss, 2009b: Ensemble covariances adaptively localized with ECO-RAP. Part 2: A strategy for the atmosphere. Tellus, 61, 97111.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., , and D. Hodyss, 2011: Adaptive ensemble covariance localization in ensemble 4D-VAR state estimation. Mon. Wea. Rev., 139, 12411255.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., , D. Hodyss, , P. Steinle, , H. Sims, , A. M. Clayton, , A. C. Lorenc, , D. M. Barker, , and M. Buehner, 2011: Efficient ensemble covariance localization in variational data assimilation. Mon. Wea. Rev., 139, 573580.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., 2005: Ensemble-derived stationary and flow-dependent background error covariances: Evaluation in a quasi-operational NWP setting. Quart. J. Roy. Meteor. Soc., 131, 10131043.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., , and D. S. Oliver, 2010: Cross-covariances and localization for EnKF in multiphase flow data assimilation. Comput. Geosci., 14, 579601.

    • Search Google Scholar
    • Export Citation
  • Deckmyn, A., , and L. Berre, 2005: A wavelet approach to representing background error covariances in a limited-area model. Mon. Wea. Rev., 133, 12791294.

    • Search Google Scholar
    • Export Citation
  • Emerick, A., , and A. Reynolds, 2011: Combining sensitivities and prior information for covariance localization in the ensemble Kalman filter for petroleum reservoir applications. Comput. Geosci., 15, 251269.

    • Search Google Scholar
    • Export Citation
  • Fisher, M., 2003: Background error covariance modelling. Proc. ECMWF Seminar on Recent Developments in Data Assimilation, Reading, United Kingdom, ECMWF, 45–63. [Available online at http://www.ecmwf.int/publications/library/ecpublications/_pdf/seminar/2003/sem2003_fisher.pdf.]

  • Gilbert, J. Ch., , and C. Lemarechal, 1989: Some numerical experiments with variable-storage quasi-Newton algorithms. Math. Program., 45, 407435.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., , J. S. Whitaker, , and C. Snyder, 2001: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev., 129, 27762790.

    • Search Google Scholar
    • Export Citation
  • Herdin, M., , N. Czink, , H. Özcelik, , and E. Bonek, 2005: Correlation matrix distance, a meaningful measure for evaluation of nonstationary MIMO channels. Proc. 61st IEEE Vehicular Technology Conf., Stockholm, Sweden, Institute of Electrical and Electronics Engineers, 136–140.

  • Houtekamer, P. L., , and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter. Mon. Wea. Rev., 126, 796811.

  • Houtekamer, P. L., , and H. L. Mitchell, 2001: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 129, 123137.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2011: Balance-aware covariance localisation for atmospheric and oceanic ensemble Kalman filters. Comput. Geosci., 15, 239250.

    • Search Google Scholar
    • Export Citation
  • Paige, C., , B. Parlett, , and H. van der Vorst, 1995: Approximate solutions and eigenvalue bounds from Krylov subspaces. Numer. Linear Algebra Appl., 2, 115134.

    • Search Google Scholar
    • Export Citation
  • Pannekoucke, O., 2009: Heterogeneous correlation modeling based on the wavelet diagonal assumption and on the diffusion operator. Mon. Wea. Rev., 137, 29953012.

    • Search Google Scholar
    • Export Citation
  • Pannekoucke, O., , and S. Massart, 2008: Estimation of the local diffusion tensor and normalization for heterogeneous correlation modelling using a diffusion equation. Quart. J. Roy. Meteor. Soc., 134, 14251438.

    • Search Google Scholar
    • Export Citation
  • Pannekoucke, O., , L. Berre, , and G. Desroziers, 2007: Filtering properties of wavelets for local background error correlations. Quart. J. Roy. Meteor. Soc., 133, 363379.

    • Search Google Scholar
    • Export Citation
  • Purser, R. J., , W. Wu, , D. F. Parrish, , and N. M. Roberts, 2003: Numerical aspects of the application of recursive filters to variational statistical analysis. Part II: Spatially inhomogeneous and anisotropic general covariances. Mon. Wea. Rev., 131, 15361548.

    • Search Google Scholar
    • Export Citation
  • Raynaud, L., , L. Berre, , and G. Desroziers, 2009: Objective filtering of the ensemble-based error variances. Quart. J. Roy. Meteor. Soc., 135, 10031014.

    • Search Google Scholar
    • Export Citation
  • Sato, Y., , M. S. F. V. De Pondeca, , R. J. Purser, , and D. F. Parrish, 2009: Ensemble-based background error covariance implementations using spatial recursive filters in NCEP’s grid-point statistical interpolation system. NCEP Office Note 459, Camp Springs, MD, 20 pp. [Available online at http://www.emc.ncep.noaa.gov/officenotes/newernotes/on459.pdf.]

  • Weaver, A. T., , and P. Courtier, 2001: Correlation modeling on a sphere using a generalized diffusion equation. Quart. J. Roy. Meteor. Soc., 127, 18151846.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. T., , and I. Mirouze, 2012: On the diffusion equation and its application to isotropic and anisotropic correlation modeling in variational assimilation. Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.1955, in press.

    • Search Google Scholar
    • Export Citation
  • Wu, W.-S., , R. J. Purser, , and D. F. Parrish, 2002: Three-dimensional variational analysis with spatially inhomogeneous covariances. Mon. Wea. Rev., 130, 29052916.

    • Search Google Scholar
    • Export Citation
  • Xu, Q., 2005: Representations of inverse covariances by differential operators. Adv. Atmos. Sci., 22, 181198.

  • Yaremchuk, M., , and S. Smith, 2011: On the correlation functions associated with the polynomials of the diffusion operator. Quart. J. Roy. Meteor. Soc., 137, 19271932.

    • Search Google Scholar
    • Export Citation
  • Yaremchuk, M., , and M. Carrier, 2012: On the renormalization of the covariance operators. Mon. Wea. Rev., 140, 637649.

  • Yaremchuk, M., , and A. Sentchev, 2012: Multi-scale correlation functions associated with polynomials of the diffusion operator. Quart. J. Roy. Meteor. Soc., 138, 19481953, doi:10.1002/qj.1896.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 19 19 5
PDF Downloads 16 16 7

Covariance Localization with the Diffusion-Based Correlation Models

View More View Less
  • 1 Naval Research Laboratory, Stennis Space Center, Mississippi
  • | 2 Department of Marine Science, University of Southern Mississippi, Hattiesburg, Mississippi
© Get Permissions
Restricted access

Abstract

Improving the performance of ensemble filters applied to models with many state variables requires regularization of the covariance estimates by localizing the impact of observations on state variables. A covariance localization technique based on modeling of the sample covariance with polynomial functions of the diffusion operator (DL method) is presented. Performance of the technique is compared with the nonadaptive (NAL) and adaptive (AL) ensemble localization schemes in the framework of numerical experiments with synthetic covariance matrices in a realistically inhomogeneous setting. It is shown that the DL approach is comparable in accuracy with the AL method when the ensemble size is less than 100. With larger ensembles, the accuracy of the DL approach is limited by the local homogeneity assumption underlying the technique. Computationally, the DL method is comparable with the NAL technique if the ratio of the local decorrelation scale to the grid step is not too large.

Corresponding author address: Max Yaremchuk, Naval Research Laboratory, Bldg. 1009, Stennis Space Center, MS 39529. E-mail: max.yaremchuk@nrlssc.navy.mil

Abstract

Improving the performance of ensemble filters applied to models with many state variables requires regularization of the covariance estimates by localizing the impact of observations on state variables. A covariance localization technique based on modeling of the sample covariance with polynomial functions of the diffusion operator (DL method) is presented. Performance of the technique is compared with the nonadaptive (NAL) and adaptive (AL) ensemble localization schemes in the framework of numerical experiments with synthetic covariance matrices in a realistically inhomogeneous setting. It is shown that the DL approach is comparable in accuracy with the AL method when the ensemble size is less than 100. With larger ensembles, the accuracy of the DL approach is limited by the local homogeneity assumption underlying the technique. Computationally, the DL method is comparable with the NAL technique if the ratio of the local decorrelation scale to the grid step is not too large.

Corresponding author address: Max Yaremchuk, Naval Research Laboratory, Bldg. 1009, Stennis Space Center, MS 39529. E-mail: max.yaremchuk@nrlssc.navy.mil
Save