• Austin, J. F., 1980: The blocking of middle latitude westerly winds by planetary waves. Quart. J. Roy. Meteor. Soc., 106, 327350.

  • Barnes, E. A., , and D. L. Hartmann, 2010: Influence of eddy-driven jet latitude on North Atlantic jet persistence and blocking frequency in CMIP3 integrations. Geophys. Res. Lett., 37, L23802, doi:10.1029/2010GL045700.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., , J. Slingo, , and T. Woollings, 2012: A methodology for the comparison of blocking climatologies across indices, models and climate scenarios. Climate Dyn., 38, 24672481.

    • Search Google Scholar
    • Export Citation
  • Barriopedro, D., , R. Garcia-Herrera, , and R. M. Trigo, 2010a: Application of blocking diagnosis methods to general circulation models. Part I: A novel detection scheme. Climate Dyn., 35, 13731391.

    • Search Google Scholar
    • Export Citation
  • Barriopedro, D., , R. Garcia-Herrera, , J. F. Gonzalez-Rouco, , and R. M. Trigo, 2010b: Application of blocking diagnosis methods to general circulation models. Part II: Model simulations. Climate Dyn., 35, 13931409.

    • Search Google Scholar
    • Export Citation
  • Cash, B., , and S. Lee, 2000: Dynamical processes of block evolution. J. Atmos. Sci., 57, 32023218.

  • Colucci, S. J., 1985: Explosive cyclogenesis and large-scale circulation changes: Implications for atmospheric blocking. J. Atmos. Sci., 42, 27012717.

    • Search Google Scholar
    • Export Citation
  • Colucci, S. J., , A. Z. Loesch, , and L. F. Bosart, 1981: Spectral evolution of a blocking episode and comparison with wave interaction theory. J. Atmos. Sci., 38, 20922111.

    • Search Google Scholar
    • Export Citation
  • Côté, J., , S. Gravel, , A. Méthot, , A. Patoine, , M. Roch, , and A. Staniforth, 1998a: The operational CMC–MRB Global Environmental Multiscale (GEM) model. Part I: Design considerations and formulation. Mon. Wea. Rev., 126, 13731395.

    • Search Google Scholar
    • Export Citation
  • Côté, J., , J. Desmarais, , S. Gravel, , A. Méthot, , A. Patoine, , M. Roch, , and A. Staniforth, 1998b: The operational CMC–MRB Global Environmental Multiscale (GEM) model. Part II: Results. Mon. Wea. Rev., 126, 13971418.

    • Search Google Scholar
    • Export Citation
  • Croci-Maspoli, M., , C. Schwierz, , and H. C. Davies, 2007a: Atmospheric blocking: Space-time links to the NAO and PNA. Climate Dyn., 29, 713725.

    • Search Google Scholar
    • Export Citation
  • Croci-Maspoli, M., , C. Schwierz, , and H. C. Davies, 2007b: A multifaceted climatology of atmospheric blocking and its recent linear trend. J. Climate, 20, 633649.

    • Search Google Scholar
    • Export Citation
  • D’Andrea, F., and Coauthors, 1998: Northern Hemisphere atmospheric blocking as simulated by 15 atmospheric general circulation models in the period 1979–1988. Climate Dyn., 14, 385407.

    • Search Google Scholar
    • Export Citation
  • Diao, Y., , J. Li, , and D. Luo, 2006: A new blocking index and its application: Blocking action in the Northern Hemisphere. J. Climate, 19, 48194839.

    • Search Google Scholar
    • Export Citation
  • Doblas-Reyes, F., , M. Casado, , and M. Pastor, 2002: Sensitivity of the Northern Hemisphere blocking frequency to the detection index. J. Geophys. Res., 107, 4009, doi:10.1029/2000JD000290.

    • Search Google Scholar
    • Export Citation
  • Dole, R., , and N. Gordon, 1983: Persistent anomalies of the extratropical Northern Hemisphere wintertime circulation: Geographical distribution and regional persistence characteristics. Mon. Wea. Rev., 111, 15671586.

    • Search Google Scholar
    • Export Citation
  • Dole, R., and Coauthors, 2011: Was there a basis for anticipating the 2010 Russian heat wave? Geophys. Res. Lett., 38, L06702, doi:10.1029/2010GL046582.

    • Search Google Scholar
    • Export Citation
  • Egger, J., 1978: Dynamics of blocking highs. J. Atmos. Sci., 35, 17881801.

  • Hoskins, B., , I. James, , and G. White, 1983: The shape, propagation and mean-flow interaction of large-scale weather systems. J. Atmos. Sci., 40, 15951612.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., , D. Yang, , and J. Yang, 2008: Blocking systems over an aqua planet. Geophys. Res. Lett., 35, L19818, doi:10.1029/2008GL035351.

  • Kaas, E., , and G. Branstator, 1993: The relationship between a zonal index and blocking activity. J. Atmos. Sci., 50, 30613077.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kolstad, E. W., , T. Breiteig, , and A. A. Scaife, 2010: The association between stratospheric weak polar vortex events and cold air outbreaks in the Northern Hemisphere. Quart. J. Roy. Meteor. Soc., 136, 886893.

    • Search Google Scholar
    • Export Citation
  • Lejenas, H., , and H. Okland, 1983: Characteristics of Northern Hemisphere blocking as determined from a long-time series of observational data. Tellus, 35A, 350362.

    • Search Google Scholar
    • Export Citation
  • Liu, Q., 1994: On the definition and persistence of blocking. Tellus, 46A, 286298.

  • Martius, O., , L. M. Polvani, , and H. C. Davies, 2009: Blocking precursors to stratospheric sudden warming events. Geophys. Res. Lett., 36, L14806, doi:10.1029/2009GL038776.

    • Search Google Scholar
    • Export Citation
  • Matsueda, M., 2011: Predictability of Euro-Russian blocking in summer of 2010. Geophys. Res. Lett., 38, L06801, doi:10.1029/2010GL046557.

    • Search Google Scholar
    • Export Citation
  • Matsueda, M., , R. Mizuta, , and S. Kusunoki, 2009: Future change in wintertime atmospheric blocking simulated using a 20-km-mesh atmospheric global circulation model. J. Geophys. Res., 114, D12114, doi:10.1029/2009JD011919.

    • Search Google Scholar
    • Export Citation
  • Metz, W., 1986: Transient cyclone-scale vorticity forcing of blocking highs. J. Atmos. Sci., 43, 14671483.

  • Mullen, S., 1987: Transient eddy forcing of blocking flows. J. Atmos. Sci., 44, 322.

  • Nakamura, H., , M. Nakamura, , and J. Anderson, 1997: The role of high- and low-frequency dynamics in blocking formation. Mon. Wea. Rev., 125, 20742093.

    • Search Google Scholar
    • Export Citation
  • Pelly, J., , and B. Hoskins, 2003: A new perspective on blocking. J. Atmos. Sci., 60, 743755.

  • Renwick, J., , and J. Wallace, 1996: Relationships between North Pacific wintertime blocking, El Niño, and the PNA pattern. Mon. Wea. Rev., 124, 20712076.

    • Search Google Scholar
    • Export Citation
  • Rex, D. F., 1950: Blocking action in the middle troposphere and its effect upon regional climate. Part 1: An aerological study of blocking action. Tellus, 2, 196211.

    • Search Google Scholar
    • Export Citation
  • Ringer, M., and Coauthors, 2006: The physical properties of the atmosphere in the new Hadley Centre Global Environmental Model (HadGEM1). Part II: Aspects of variability and regional climate. J. Climate, 19, 13021326.

    • Search Google Scholar
    • Export Citation
  • Sausen, R., , W. Konig, , and F. Sielman, 1995: Analysis of blocking events from observations and ECHAM model simulations. Tellus, 47A, 421438.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., , T. Woollings, , J. Knight, , G. Martin, , and T. Hinton, 2010: Atmospheric blocking and mean biases in climate models. J. Climate, 23, 61436152.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and Coauthors, 2011: Improved Atlantic winter blocking in a climate model. Geophys. Res. Lett., 38, L23703, doi:10.1029/2011GL049573.

    • Search Google Scholar
    • Export Citation
  • Scherrer, S., , M. Croci-Maspoli, , C. Schwierz, , and C. Appenzeller, 2006: Two-dimensional indices of atmospheric blocking and their statistical relationship with winter climate patterns in the Euro-Atlantic region. Int. J. Climatol., 26, 233249.

    • Search Google Scholar
    • Export Citation
  • Schwierz, C., , M. Croci-Maspoli, , and H. Davies, 2004: Perspicacious indicators of atmospheric blocking. Geophys. Res. Lett., 31, L06125, doi:10.1029/2003GL019341.

    • Search Google Scholar
    • Export Citation
  • Shabbar, A., , J. Huang, , and K. Higuchi, 2001: The relationship between the wintertime North Atlantic Oscillation and blocking episodes in the North Atlantic. Int. J. Climatol., 21, 355369.

    • Search Google Scholar
    • Export Citation
  • Sheng, J., , and J. Derome, 1991a: An observational study of the energy-transfer between the seasonal mean flow and transient eddies. Tellus, 43A, 128144.

    • Search Google Scholar
    • Export Citation
  • Sheng, J., , and J. Derome, 1991b: On the interactions among flow components in different frequency bands in the Canadian Climate Center general circulation model. Atmos.–Ocean, 29, 6284.

    • Search Google Scholar
    • Export Citation
  • Shutts, G., 1983: The propagation of eddies in diffluent jetstreams: Eddy vorticity forcing of ‘blocking’ flow fields. Quart. J. Roy. Meteor. Soc., 109, 737761.

    • Search Google Scholar
    • Export Citation
  • Simmons, A., , J. Wallace, , and G. Branstator, 1983: Barotropic wave-propagation and instability, and atmospheric teleconnection patterns. J. Atmos. Sci., 40, 13631392.

    • Search Google Scholar
    • Export Citation
  • Tibaldi, S., , and F. Molteni, 1990: On the operational predictability of blocking. Tellus, 42A, 343365.

  • Tibaldi, S., , F. D. Andrea, , E. Tosi, , and E. Roeckner, 1997: Climatology of Northern Hemisphere blocking in the ECHAM model. Climate Dyn., 13, 649666.

    • Search Google Scholar
    • Export Citation
  • Trigo, R., , I. Trigo, , C. DaCamara, , and T. Osborn, 2004: Climate impact of the European winter blocking episodes from the NCEP/NCAR Reanalyses. Climate Dyn., 23, 1728.

    • Search Google Scholar
    • Export Citation
  • Tyrlis, E., , and B. J. Hoskins, 2008: The morphology of Northern Hemisphere blocking. J. Atmos. Sci., 65, 16531665.

  • Wallace, J., , and H. Hsu, 1985: Another look at the index cycle. Tellus, 37A, 478486.

  • Webster, P. J., , V. E. Toma, , and H. M. Kim, 2011: Were the 2010 Pakistan floods predictable? Geophys. Res. Lett., 38, L04806, doi:10.1029/2010GL046346.

    • Search Google Scholar
    • Export Citation
  • Wiedenmann, J. M., , A. R. Lupo, , I. I. Mokhov, , and E. A. Tikhonova, 2002: The climatology of blocking anticyclones for the Northern and Southern Hemispheres: Block intensity as a diagnostic. J. Climate, 15, 34593473.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., , B. Hoskins, , M. Blackburn, , and P. Berrisford, 2008: A new Rossby wave-breaking interpretation of the North Atlantic Oscillation. J. Atmos. Sci., 65, 609626.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., , A. Charlton-Perez, , S. Ineson, , A. G. Marshall, , and G. Masato, 2010: Associations between stratospheric variability and tropospheric blocking. J. Geophys. Res., 115, D06108, doi:10.1029/2009JD012742.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 85 85 14
PDF Downloads 71 71 14

Evaluation of Northern Hemisphere Blocking Climatology in the Global Environment Multiscale Model

View More View Less
  • 1 Department of Atmospheric and Oceanic Sciences, McGill University, Montréal, Québec, Canada
  • | 2 Atmospheric Numerical Weather Prediction Research, Environment Canada, Dorval, Québec, Canada
© Get Permissions
Restricted access

Abstract

The performance of the Global Environmental Multiscale (GEM) model, the Canadian operational numerical model, in reproducing atmospheric low-frequency variability is evaluated in the context of Northern Hemisphere blocking climatology. The validation is conducted by applying a comprehensive but relatively simple blocking detection algorithm to a 20-yr (1987–2006) integration of the GEM model in climate mode. The comparison to reanalysis reveals that, although the model can reproduce Northern Hemisphere blocking climatology reasonably well, the maximum blocking frequency over the North Atlantic and western Europe is generally underestimated and its peak season is delayed from late winter to spring. This contrasts with the blocking frequency over the North Pacific, which is generally overestimated during all seasons. These misrepresentations of blocking climatology are found to be largely associated with the biases in climatological background flow. The modeled stationary waves show a seasonal delay in zonal wavenumber 1 and an eastward extension in zonal wavenumber-2 components consistent with blocking frequency biases. High-frequency eddies are, however, consistently underestimated both in the North Atlantic and Pacific, indicating that the biases in eddy fields might not be the main reason for the blocking biases in the North Pacific.

Current affiliation: School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea.

Corresponding author address: Seok-Woo Son, McGill University, 805 rue Sherbrooke Ouest, Montréal, QC H3A 2K6, Canada. E-mail: seok-woo.son@mcgill.ca

Abstract

The performance of the Global Environmental Multiscale (GEM) model, the Canadian operational numerical model, in reproducing atmospheric low-frequency variability is evaluated in the context of Northern Hemisphere blocking climatology. The validation is conducted by applying a comprehensive but relatively simple blocking detection algorithm to a 20-yr (1987–2006) integration of the GEM model in climate mode. The comparison to reanalysis reveals that, although the model can reproduce Northern Hemisphere blocking climatology reasonably well, the maximum blocking frequency over the North Atlantic and western Europe is generally underestimated and its peak season is delayed from late winter to spring. This contrasts with the blocking frequency over the North Pacific, which is generally overestimated during all seasons. These misrepresentations of blocking climatology are found to be largely associated with the biases in climatological background flow. The modeled stationary waves show a seasonal delay in zonal wavenumber 1 and an eastward extension in zonal wavenumber-2 components consistent with blocking frequency biases. High-frequency eddies are, however, consistently underestimated both in the North Atlantic and Pacific, indicating that the biases in eddy fields might not be the main reason for the blocking biases in the North Pacific.

Current affiliation: School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea.

Corresponding author address: Seok-Woo Son, McGill University, 805 rue Sherbrooke Ouest, Montréal, QC H3A 2K6, Canada. E-mail: seok-woo.son@mcgill.ca
Save