• Aiyyer, A. R., , and C. Thorncroft, 2006: Climatology of vertical wind shear over the tropical Atlantic. J. Climate, 19, 29692983.

  • Bengtsson, L., , K. I. Hodges, , and M. Esch, 2007a: Tropical cyclones in a T159 resolution global climate model: Comparison with observations and re-analyses. Tellus, 59A, 396416.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., , K. I. Hodges, , M. Esch, , N. Keenlyside, , L. Kornblueh, , J.-J. Luo, , and T. Yamagata, 2007b: How may tropical cyclones change in a warmer climate? Tellus, 59A, 539561.

    • Search Google Scholar
    • Export Citation
  • Cai, M., , C.-S. Shin, , H. M. van den Dool, , W. Wang, , S. Saha, , and A. Kumar, 2009: The role of long-term trends in seasonal predictions: Implication of global warming in the NCEP CFS. Wea. Forecasting, 24, 965973.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., , K. A. Emanuel, , and A. H. Sobel, 2007: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20, 48194834.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686688.

  • Erdman, C., , and J. W. Emerson, 2008: A fast Bayesian change point analysis for the segmentation of microarray data. Bioinformatics, 24, 21432148, doi:10.1093/bioinformatics/btn404.

    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., , and L. Shapiro, 1996: Physical mechanisms for the association of El Niño and West African rainfall with Atlantic major hurricane activity. J. Climate, 9, 11691187.

    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., , C. W. Landsea, , A. M. Mestas-Nuñez, , and W. M. Gray, 2001: The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293, 474479.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1984: Atlantic seasonal hurricane frequency. Part I: El Niño and the 30 mb quasi-biennial oscillation influences. Mon. Wea. Rev., 112, 16491668.

    • Search Google Scholar
    • Export Citation
  • Gualdi, S., , E. Scoccimarro, , and A. Navarra, 2008: Changes in tropical cyclone activity due to global warming: Results from a high-resolution coupled general circulation model. J. Climate, 21, 52045228.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., , and P. J. Webster, 2007: Heightened tropical cyclone activity in the North Atlantic: Natural variability or climate trend? Philos. Trans. Roy. Soc. London, 365A, 26952716.

    • Search Google Scholar
    • Export Citation
  • Hoyos, C. D., , P. A. Agudelo, , P. J. Webster, , and J. A. Curry, 2006: Deconvolution of the factors contributing to the increase in global hurricane intensity. Science, 312, 9497.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., , M. C. Kruk, , D. H. Levinson, , H. J. Diamond, , and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363376.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., , Q. Zhang, , J.-K. E. Schemm, , M. L’Heureux, , and K.-H. Seo, 2008: An assessment of errors in the simulation of atmospheric interannual variability in uncoupled AGCM simulations. J. Climate, 21, 2204–2217.

  • Landsea, C. W., 2005: Hurricanes and global warming. Nature, 438, E11E12, doi:10.1038/nature04477.

  • LaRow, T. E., , Y.-K. Lim, , D. W. Shin, , E. Chassignet, , and S. Cocke, 2008: Atlantic basin seasonal hurricane simulations. J. Climate, 21, 31913206.

    • Search Google Scholar
    • Export Citation
  • LaRow, T. E., , L. Stefanova, , D. W. Shin, , and S. Cocke, 2010: Seasonal Atlantic tropical cyclone hindcasting/forecasting using two sea surface temperature datasets. Geophys. Res. Lett., 37, L02804, doi:10.1029/2009GL041459.

    • Search Google Scholar
    • Export Citation
  • Oouchi, K., , J. Yoshimura, , H. Yoshimura, , R. Mizuta, , S. Kusunoki, , and A. Noda, 2006: Tropical cyclone climatology in a global- warming climate as simulated in a 20 km mesh global atmospheric model: Frequency and wind intensity analyses. J. Meteor. Soc. Japan, 84, 259276.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., , D. E. Parker, , E. B. Horton, , C. K. Folland, , L. V. Alexander, , D. P. Rowell, , E. C. Kent, , and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., , N. A. Rayner, , T. M. Smith, , D. C. Stokes, , and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2006: The Climate Forecast System at NCEP. J. Climate, 19, 34833517.

  • Santer, B. D., and Coauthors, 2006: Forced and unforced ocean temperature changes in Atlantic and Pacific tropical cyclogenesis regions. Proc. Natl. Acad. Sci. USA, 103, 13 90513 910.

    • Search Google Scholar
    • Export Citation
  • Saunders, M., , and A. Lea, 2008: Large contribution of sea surface warming to recent increase in Atlantic hurricane activity. Nature, 451, 557461.

    • Search Google Scholar
    • Export Citation
  • Shaman, J., , S. K. Esbensen, , and E. D. Maloney, 2009: The dynamics of the ENSO–Atlantic hurricane teleconnection: ENSO-related changes to the North African–Asian jet affect Atlantic basin tropical cyclogenesis. J. Climate, 22, 24582482.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • Vecchi, G. A., , and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 4316–4340.

  • Vimont, D. J., , and J. P. Kossin, 2007: The Atlantic meridional mode and hurricane activity. Geophys. Res. Lett., 34, L07709, doi:10.1029/2007GL029683.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., 2006: Seasonal forecasting of tropical storm frequency using a multi-model ensemble. Quart. J. Roy. Meteor. Soc., 132, 647666.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., , and T. N. Stockdale, 2001: Seasonal forecasting of tropical storms using coupled GCM integrations. Mon. Wea. Rev., 129, 25212537.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., and Coauthors, 2007: Dynamically-based seasonal forecasts of Atlantic tropical storm activity issued in June by EUROSIP. Geophys. Res. Lett., 34, L16815, doi:10.1029/2007GL030740.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., , I. M. Held, , S.-J. Lin, , and G. A. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 66536678.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., , I. M. Held, , and G. A. Vecchi, 2010: Retrospective forecasts of the hurricane season using a global atmospheric model assuming persistence of SST anomalies. Mon. Wea. Rev., 138, 38583868.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 21 21 2
PDF Downloads 17 17 3

The Impact of SST Bias Correction on North Atlantic Hurricane Retrospective Forecasts

View More View Less
  • 1 Center for Ocean–Atmospheric Prediction Studies, The Florida State University, Tallahassee, Florida
© Get Permissions
Restricted access

Abstract

The impact of sea surface temperature (SST) bias correction on seasonal North Atlantic hurricane retrospective forecasts is examined with the Florida State University/Center for Ocean–Atmospheric Prediction Studies (FSU/COAPS) atmospheric global spectral model. The retrospective forecasts cover a 28-yr period (1982–2009). For each year of the retrospective forecast, two, four-member ensembles are developed using predicted SSTs from the National Oceanic and Atmospheric Administration’s Climate Forecast System, version 1 (CFSv1), model. The first ensemble uses the SSTs forecasted from the CFSv1 model and the second ensemble uses the same SSTs with a simple bias correction applied. Seasonal hurricane counts determined using both SSTs are shown to have skill, although the skill is much greater using the bias-corrected SSTs. In addition, a positive significant trend in the hurricane counts is noted using the bias-corrected SSTs, in good agreement with observations while no significant trend is noted using the non-bias-corrected SST. The reason for the enhanced skill is related in part to the magnitude of the mean SST allowing stronger convective activity in the equatorial Pacific to more effectively alter the vertical wind shear in the tropical North Atlantic through changes in the Walker cell.

Corresponding author address: Dr. Timothy LaRow, The Florida State University, Center for Ocean–Atmospheric Prediction Studies, 2035 E. Paul Dirac Dr., R. M. Johnson Bldg., Rm. 225, Tallahassee, FL 32306-2840. E-mail: tlarow@fsu.edu

Abstract

The impact of sea surface temperature (SST) bias correction on seasonal North Atlantic hurricane retrospective forecasts is examined with the Florida State University/Center for Ocean–Atmospheric Prediction Studies (FSU/COAPS) atmospheric global spectral model. The retrospective forecasts cover a 28-yr period (1982–2009). For each year of the retrospective forecast, two, four-member ensembles are developed using predicted SSTs from the National Oceanic and Atmospheric Administration’s Climate Forecast System, version 1 (CFSv1), model. The first ensemble uses the SSTs forecasted from the CFSv1 model and the second ensemble uses the same SSTs with a simple bias correction applied. Seasonal hurricane counts determined using both SSTs are shown to have skill, although the skill is much greater using the bias-corrected SSTs. In addition, a positive significant trend in the hurricane counts is noted using the bias-corrected SSTs, in good agreement with observations while no significant trend is noted using the non-bias-corrected SST. The reason for the enhanced skill is related in part to the magnitude of the mean SST allowing stronger convective activity in the equatorial Pacific to more effectively alter the vertical wind shear in the tropical North Atlantic through changes in the Walker cell.

Corresponding author address: Dr. Timothy LaRow, The Florida State University, Center for Ocean–Atmospheric Prediction Studies, 2035 E. Paul Dirac Dr., R. M. Johnson Bldg., Rm. 225, Tallahassee, FL 32306-2840. E-mail: tlarow@fsu.edu
Save