• Avila, L. A., 1991: Eastern North Pacific hurricane season of 1990. Mon. Wea. Rev., 119, 20342046.

  • Avila, L. A., , and R. J. Pasch, 1992: Atlantic tropical systems of 1991. Mon. Wea. Rev., 120, 26882696.

  • Awaka, J., , T. Iguchi, , and K. Okamoto, 1998: Early results on rain type classification by the Tropical Rainfall Measuring Mission (TRMM) precipitation radar. Proc. Eighth URSI Commission F. Triennial Open Symp., Aveiro, Portugal, International Union of Radio Science, 143–146.

  • Awaka, J., , T. Iguchi, , and K. Okamoto, 2009: TRMM PR standard algorithm 2A23 and its performance on bright band detection. J. Meteor. Soc. Japan, 87A, 3152.

    • Search Google Scholar
    • Export Citation
  • Berry, G. J., , and C. Thorncroft, 2005: Case study of an intense African easterly wave. Mon. Wea. Rev., 133, 752766.

  • Boccippio, D. J., , S. J. Goodman, , and S. Heckman, 2000: Regional differences in tropical lightning distributions. J. Appl. Meteor., 39, 22312248.

    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., , W. J. Koshak, , and R. J. Blakeslee, 2002: Performance assessment of the optical transient detector and lightning imaging sensor. Part I: Predicted diurnal variability. J. Atmos. Oceanic Technol., 19, 13181332.

    • Search Google Scholar
    • Export Citation
  • Burpee, R. W., 1972: The origin and structure of easterly waves in the lower troposphere of North Africa. J. Atmos. Sci., 29, 7789.

  • Carlson, T. N., 1969: Synoptic histories of three African disturbances that developed into Atlantic hurricanes. Mon. Wea. Rev., 97, 256276.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., , and E. J. Zipser, 1999: Relationships between tropical cyclone intensity and satellite-based indicators of inner core convection: 85-GHz ice-scattering signature and lightning. Mon. Wea. Rev., 127, 103123.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., , and E. J. Zipser, 2002: Reflectivity, ice scattering, and lightning characteristics of hurricane eyewalls and rainbands. Part II: Intercomparison of observations. Mon. Wea. Rev., 130, 785801.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., , E. J. Zipser, , and S. W. Nesbitt, 2002: Reflectivity, ice scattering, and lightning characteristics of hurricane eyewalls and rainbands. Part I: Quantitative description. Mon. Wea. Rev., 130, 769784.

    • Search Google Scholar
    • Export Citation
  • Christian, H. J., 1999: Optical detection of lightning from space. Proc. 11th Int. Conf. on Atmospheric Electricity, Guntersville, AL, NASA Conf. Publ. NASA/CP-1999-209261, 715–718. [Available online at http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19990108601_1999074615.pdf.]

  • Christian, H. J., , R. J. Blakeslee, , and S. L. Goodman, 1992: Lightning Imaging Sensor (LIS) for the Earth Observing System. NASA Tech. Memo. NASA TM-4350, 36 pp.

  • Christian, H. J., and Coauthors, 2003: Global frequency and distribution of lightning as observed from space by the optical transient detector. J. Geophys. Res., 108, 4005, doi:10.1029/2002JD002347.

    • Search Google Scholar
    • Export Citation
  • Chronis, T. G., , E. R. Williams, , E. N. Anagnostou, , and W. A. Petersen, 2007: African lightning: Indicator of tropical Atlantic cyclone formation. Eos, Trans. Amer. Geophys. Union, 88, 397398.

    • Search Google Scholar
    • Export Citation
  • Deierling, W., , and W. A. Petersen, 2008: Total lightning activity as an indicator of updraft characteristics. J. Geophys. Res., 113, D16210, doi:10.1029/2007JD009598.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., , M. T. Montgomery, , and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys., 9, 55875646.

    • Search Google Scholar
    • Export Citation
  • Farfan, L. M., , and J. A. Zehnder, 1997: Orographic influence on the synoptic-scale circulations associated with the genesis of Hurricane Guillermo (1991). Mon. Wea. Rev., 125, 26832698.

    • Search Google Scholar
    • Export Citation
  • Gu, G., , R. F. Adler, , G. J. Huffman, , and S. Curtis, 2004: African easterly waves and their association with precipitation. J. Geophys. Res., 109, D04101, doi:10.1029/2003JD003967.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., , M. T. Montgomery, , and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of tropical cyclone Diana (1984). J. Atmos. Sci., 61, 12091232.

    • Search Google Scholar
    • Export Citation
  • Hopsch, S. B., , C. D. Thorncroft, , and K. R. Tyle, 2010: Analysis of African easterly wave structures and their role in influencing tropical cyclogenesis. Mon. Wea. Rev., 138, 13991419.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., , W.-C. Lee, , and M. M. Bell, 2009: Convective contribution to the genesis of Hurricane Ophelia (2005). Mon. Wea. Rev., 137, 27782800.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., , T. Kozu, , R. Meneghini, , J. Awaka, , and K. Okamoto, 2000: Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteor., 39, 20382052.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., , T. Kozu, , J. Kwiatkowski, , R. Meneghini, , J. Awaka, , and K. Okamoto, 2009: Uncertainties in the rain profiling algorithm for the TRMM precipitation radar. J. Meteor. Soc. Japan, 87A, 130.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kozu, T., and Coauthors, 2001: Development of precipitation radar onboard the Tropical Rainfall Measuring Mission (TRMM) satellite. IEEE Trans. Geosci. Remote Sens., 39, 102116.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., , W. Barnes, , T. Kozu, , J. Shiue, , and J. Simpson, 1998: The tropical rainfall measuring mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817.

    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., , and R. E. Tuleya, 1981: A numerical simulation study on the genesis of a tropical storm. Mon. Wea. Rev., 109, 16291653.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., 1993: A climatology of intense (or major) Atlantic hurricanes. Mon. Wea. Rev., 121, 17031713.

  • Leary, L. A., , and E. A. Ritchie, 2009: Lightning flash rates as an indicator of tropical cyclone genesis in the eastern North Pacific. Mon. Wea. Rev., 137, 34563470.

    • Search Google Scholar
    • Export Citation
  • Leppert, K. D., II, , and W. A. Petersen, 2010: Electrically active hot towers in African easterly waves prior to tropical cyclogenesis. Mon. Wea. Rev., 138, 663687.

    • Search Google Scholar
    • Export Citation
  • Leppert, K. D., II, , and D. J. Cecil, 2012: African easterly wave convection and tropical cyclogenesis: A Lagrangian perspective. Preprints, 30th Conf. on Hurricanes and Tropical Meteorology, Ponte Vedra Beach, FL, Amer. Meteor. Soc., 3C.6. [Available online at https://ams.confex.com/ams/30Hurricane/webprogram/Manuscript/Paper205276/AMS_Trop12_ExtAbst.pdf.]

  • Liu, Z., , D. Ostrenga, , G. G. Leptoukh, , and A. V. Mehta, 2009: Online visualization and analysis of global half-hourly pixel-resolution infrared dataset. Preprints, 25th Conf. on Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, Phoenix, AZ, Amer. Meteor. Soc., J3.4. [Available online at https://ams.confex.com/ams/pdfpapers/148189.pdf.]

  • Meneghini, R., , T. Iguchi, , T. Kozu, , L. Liao, , K. Okamoto, , J. A. Jones, , and J. Kwiatkowski, 2000: Use of the surface reference technique for path attenuation estimates from the TRMM precipitation radar. J. Appl. Meteor., 39, 20532070.

    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., , and E. J. Zipser, 1996: Defining mesoscale convective systems by their 85-GHz ice-scattering signatures. Bull. Amer. Meteor. Soc., 77, 11791189.

    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., , J. S. Famiglietti, , and E. J. Zipser, 1999: The contribution to tropical rainfall with respect to convective system type, size, and intensity estimated from the 85-GHz ice- scattering signature. J. Appl. Meteor., 38, 596606.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., , and D. Vollaro, 2000: Planetary- and synoptic-scale influences on eastern Pacific tropical cyclogenesis. Mon. Wea. Rev., 128, 32963307.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., , D. Knight, , M. Dickinson, , D. Vollaro, , and S. Skubis, 1997: Potential vorticity, easterly waves, and eastern Pacific tropical cyclogenesis. Mon. Wea. Rev., 125, 26992708.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., , M. E. Nicholls, , T. A. Cram, , and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355386.

    • Search Google Scholar
    • Export Citation
  • Mozer, J. B., , and J. A. Zehnder, 1996: Lee vorticity production by large-scale tropical mountain ranges. Part I: Eastern North Pacific tropical cyclogenesis. J. Atmos. Sci., 53, 521538.

    • Search Google Scholar
    • Export Citation
  • National Hurricane Center, cited 2011: NHC archive of hurricane seasons. [Available online at http://www.nhc.noaa.gov/pastall.shtml.]

  • Nolan, D. S., 2007: What is the trigger for tropical cyclogenesis? Aust. Meteor. Mag., 56, 241266.

  • Norquist, D. C., , E. E. Recker, , and R. J. Reed, 1977: The energetics of wave disturbances as observed during phase III of GATE. Mon. Wea. Rev., 105, 334342.

    • Search Google Scholar
    • Export Citation
  • Panofsky, H. A., , and G. W. Brier, 1958: Some Applications of Statistics to Meteorology. The Pennsylvania State University, 224 pp.

  • Price, C., , Y. Yair, , and M. Asfur, 2007: East African lightning as a precursor of Atlantic hurricane activity. Geophys. Res. Lett., 34, L09805, doi:10.1029/2006GL028884.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., , S. L. Sessions, , and C. Lopez Carrillo, 2011: Thermodynamics of tropical cyclogenesis in the northwest Pacific. J. Geophys. Res., 116, D18101, doi:10.1029/2011JD015624.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., , M. T. Montgomery, , and L. F. Bosart, 2005: Mesoscale observations of the genesis of Hurricane Dolly (1996). J. Atmos. Sci., 62, 31513171.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., , D. C. Norquist, , and E. E. Recker, 1977: The structure and properties of African wave disturbances as observed during phase III of GATE. Mon. Wea. Rev., 105, 317333.

    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., , and G. J. Holland, 1997: Scale interactions during the formation of Typhoon Irving. Mon. Wea. Rev., 125, 13771396.

  • Rotunno, R., , and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a non-hydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542561.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., , E. R. Williams, , and T. D. Keenan, 1992: The down under Doppler and electricity experiment (DUNDEE): Overview and preliminary results. Bull. Amer. Meteor. Soc., 73, 316.

    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., , and S. L. Peck, 1998: Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collisions. J. Geophys. Res., 103 (D12), 13 94913 956.

    • Search Google Scholar
    • Export Citation
  • Serra, Y. L., , G. N. Kiladis, , and M. F. Cronin, 2008: Horizontal and vertical structure of easterly waves in the Pacific ITCZ. J. Atmos. Sci., 65, 12661284.

    • Search Google Scholar
    • Export Citation
  • Serra, Y. L., , G. N. Kiladis, , and K. I. Hodges, 2010: Tracking and mean structure of easterly waves over the Intra-Americas Sea. J. Climate, 23, 48234840.

    • Search Google Scholar
    • Export Citation
  • Sippel, J. A., , J. W. Nielsen-Gammon, , and S. E. Allen, 2006: The multiple-vortex nature of tropical cyclogenesis. Mon. Wea. Rev., 134, 17961814.

    • Search Google Scholar
    • Export Citation
  • Smith, E. A., , H. J. Cooper, , X. Xiang, , A. Mugnai, , and G. J. Tripoli, 1992: Foundations for statistical-physical precipitation retrieval from passive microwave satellite measurements. Part I: Brightness temperature properties of a time-dependent cloud-radiation model. J. Appl. Meteor., 31, 506531.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., , H. M. Goodman, , and R. E. Hood, 1989: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6, 254273.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 1978: Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35, 15361548.

  • Thorncroft, C. D., , N. M. J. Hall, , and G. N. Kiladis, 2008: Three-dimensional structure and dynamics of African easterly waves. Part III: Genesis. J. Atmos. Sci., 65, 35963607.

    • Search Google Scholar
    • Export Citation
  • Toracinta, E. R., , D. J. Cecil, , E. J. Zipser, , and S. W. Nesbitt, 2002: Radar, passive microwave, and lightning characteristics of precipitating systems in the tropics. Mon. Wea. Rev., 130, 802824.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., , S. A. Rutledge, , S. G. Geotis, , N. Renno, , E. Rasmussen, , and T. Rickenbach, 1992: A radar and electrical study of tropical “hot towers.” J. Atmos. Sci., 49, 13861395.

    • Search Google Scholar
    • Export Citation
  • Yang, S., , W. S. Olson, , J.-J. Wang, , T. L. Bell, , E. A. Smith, , and C. D. Kummerow, 2006: Precipitation and latent heating distributions from satellite passive microwave radiometry. Part II: Evaluation of estimates using independent data. J. Appl. Meteor. Climatol., 45, 721739.

    • Search Google Scholar
    • Export Citation
  • Zehnder, J. A., 1991: The interaction of planetary-scale tropical easterly waves with topography: A mechanism for the initiation of tropical cyclones. J. Atmos. Sci., 48, 12171230.

    • Search Google Scholar
    • Export Citation
  • Zehnder, J. A., , D. M. Powell, , and D. L. Ropp, 1999: The interaction of easterly waves, orography, and the intertropical convergence zone in the genesis of eastern Pacific tropical cyclones. Mon. Wea. Rev., 127, 15661585.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1994: Deep cumulonimbus cloud systems in the tropics with and without lightning. Mon. Wea. Rev., 122, 18371851.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 17 17 2
PDF Downloads 18 18 5

Electrically Active Convection in Tropical Easterly Waves and Implications for Tropical Cyclogenesis in the Atlantic and East Pacific

View More View Less
  • 1 University of Alabama in Huntsville, Huntsville, Alabama
  • | 2 NASA GSFC/Wallops Flight Facility Field Support Office, Wallops Island, Virginia
  • | 3 University of Alabama in Huntsville, Huntsville, Alabama
© Get Permissions
Restricted access

Abstract

In this study, the authors investigated the characteristics of tropical easterly wave convection and the possible implications of convective structure on tropical cyclogenesis and intensification over the Atlantic Ocean and the east Pacific Ocean. Easterly waves were partitioned into northerly, southerly, trough, and ridge phases based on the 700-hPa meridional wind from the National Centers for Environmental Prediction–National Center for Atmospheric Research reanalysis dataset. Waves were subsequently divided according to whether they did or did not develop tropical cyclones (i.e., developing and nondeveloping, respectively), and developing waves were further subdivided according to development location. Finally, composites as a function of wave phase and category were created using data from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager, Precipitation Radar (PR), and Lightning Imaging Sensor as well as infrared (IR) brightness temperature data from the NASA global-merged IR brightness temperature dataset.

Results suggest that the convective characteristics that best distinguish developing from nondeveloping waves vary according to where developing waves spawn tropical cyclones. For waves that develop a cyclone in the Atlantic basin, coverage by IR brightness temperatures ≤240 and ≤210 K provide the best distinction between developing and nondeveloping waves. In contrast, several variables provide a significant distinction between nondeveloping waves and waves that develop cyclones over the east Pacific as these waves near their genesis location including IR threshold coverage, lightning flash rates, and low-level (<4.5 km) PR reflectivity. Results of this study may be used to help develop thresholds to better distinguish developing from nondeveloping waves and serve as another aid for tropical cyclogenesis forecasting.

Current affiliation: NASA Marshall Space Flight Center, Huntsville, Alabama.

Corresponding author address: Kenneth Leppert II, NSSTC, 320 Sparkman Dr., Rm. 4074, Huntsville, AL 35805. E-mail: leppert@nsstc.uah.edu

Abstract

In this study, the authors investigated the characteristics of tropical easterly wave convection and the possible implications of convective structure on tropical cyclogenesis and intensification over the Atlantic Ocean and the east Pacific Ocean. Easterly waves were partitioned into northerly, southerly, trough, and ridge phases based on the 700-hPa meridional wind from the National Centers for Environmental Prediction–National Center for Atmospheric Research reanalysis dataset. Waves were subsequently divided according to whether they did or did not develop tropical cyclones (i.e., developing and nondeveloping, respectively), and developing waves were further subdivided according to development location. Finally, composites as a function of wave phase and category were created using data from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager, Precipitation Radar (PR), and Lightning Imaging Sensor as well as infrared (IR) brightness temperature data from the NASA global-merged IR brightness temperature dataset.

Results suggest that the convective characteristics that best distinguish developing from nondeveloping waves vary according to where developing waves spawn tropical cyclones. For waves that develop a cyclone in the Atlantic basin, coverage by IR brightness temperatures ≤240 and ≤210 K provide the best distinction between developing and nondeveloping waves. In contrast, several variables provide a significant distinction between nondeveloping waves and waves that develop cyclones over the east Pacific as these waves near their genesis location including IR threshold coverage, lightning flash rates, and low-level (<4.5 km) PR reflectivity. Results of this study may be used to help develop thresholds to better distinguish developing from nondeveloping waves and serve as another aid for tropical cyclogenesis forecasting.

Current affiliation: NASA Marshall Space Flight Center, Huntsville, Alabama.

Corresponding author address: Kenneth Leppert II, NSSTC, 320 Sparkman Dr., Rm. 4074, Huntsville, AL 35805. E-mail: leppert@nsstc.uah.edu
Save