A Conservative Integration of the Pseudo-Incompressible Equations with Implicit Turbulence Parameterization

Felix Rieper Institut für Atmosphäre und Umwelt, Goethe-Universität Frankfurt, Frankfurt, Germany

Search for other papers by Felix Rieper in
Current site
Google Scholar
PubMed
Close
,
Stefan Hickel Lehrstuhl für Aerodynamik und Strömungsmechanik, TU München, Munich, Germany

Search for other papers by Stefan Hickel in
Current site
Google Scholar
PubMed
Close
, and
Ulrich Achatz Institut für Atmosphäre und Umwelt, Goethe-Universität Frankfurt, Frankfurt, Germany

Search for other papers by Ulrich Achatz in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Durran’s pseudo-incompressible equations are integrated in a mass and momentum conserving way with a new implicit turbulence model. This system is soundproof, which has two major advantages over fully compressible systems: the Courant–Friedrichs–Lewy (CFL) condition for stable time advancement is no longer dictated by the speed of sound and all waves in the model are clearly gravity waves (GW). Thus, the pseudo-incompressible equations are an ideal laboratory model for studying GW generation, propagation, and breaking. Gravity wave breaking creates turbulence that needs to be parameterized. For the first time the adaptive local deconvolution method (ALDM) for implicit large-eddy simulation (ILES) is applied to non-Boussinesq stratified flows. ALDM provides a turbulence model that is fully merged with the discretization of the flux function. In the context of non-Boussinesq stratified flows this poses some new numerical challenges—the solution of which is presented in this text. In numerical test cases the authors show the agreement of the results with the literature (Robert’s hot–cold bubble test case), they present the sensitivity to the model’s resolution and discretization, and they demonstrate qualitatively the behavior of the implicit turbulence model for a 2D breaking gravity wave packet.

Corresponding author address: Felix Rieper, Deutscher Wetterdienst, Frankfurter Str. 135, D-63067 Offenbach, Germany. E-mail: felix.rieper@dwd.de

Abstract

Durran’s pseudo-incompressible equations are integrated in a mass and momentum conserving way with a new implicit turbulence model. This system is soundproof, which has two major advantages over fully compressible systems: the Courant–Friedrichs–Lewy (CFL) condition for stable time advancement is no longer dictated by the speed of sound and all waves in the model are clearly gravity waves (GW). Thus, the pseudo-incompressible equations are an ideal laboratory model for studying GW generation, propagation, and breaking. Gravity wave breaking creates turbulence that needs to be parameterized. For the first time the adaptive local deconvolution method (ALDM) for implicit large-eddy simulation (ILES) is applied to non-Boussinesq stratified flows. ALDM provides a turbulence model that is fully merged with the discretization of the flux function. In the context of non-Boussinesq stratified flows this poses some new numerical challenges—the solution of which is presented in this text. In numerical test cases the authors show the agreement of the results with the literature (Robert’s hot–cold bubble test case), they present the sensitivity to the model’s resolution and discretization, and they demonstrate qualitatively the behavior of the implicit turbulence model for a 2D breaking gravity wave packet.

Corresponding author address: Felix Rieper, Deutscher Wetterdienst, Frankfurter Str. 135, D-63067 Offenbach, Germany. E-mail: felix.rieper@dwd.de
Save
  • Achatz, U., R. Klein, and F. Senf, 2010: Gravity waves, scale asymptotics, and the pseudo-incompressible equations. J. Fluid Mech., 663, 120147.

    • Search Google Scholar
    • Export Citation
  • Adams, N., S. Hickel, and S. Franz, 2004: Implicit subgrid-scale modeling by adaptive deconvolution. J. Comput. Phys., 200, 412431, doi:10.1016/j.jcp.2004.04.010.

    • Search Google Scholar
    • Export Citation
  • Batchelor, G. K., 1953: The conditions for dynamical similarity of motions of a frictionless perfect-gas atmosphere. Quart. J. Roy. Meteor. Soc., 79, 224235.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1989: Improving the anelastic approximation. J. Atmos. Sci., 46, 14531461.

  • Durran, D. R., 2008: A physically motivated approach for filtering acoustic waves from the equations governing compressible stratified flow. J. Fluid Mech., 601, 365379, doi:10.1017/S0022112008000608.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and A. Arakawa, 2007: Generalizing the Boussinesq approximation to stratified compressible flow. C. R. Mec., 355, 655664, doi:10.1016/j.crme.2007.08.010.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41, 1003, doi:10.1029/2001RG000106.

    • Search Google Scholar
    • Export Citation
  • Gottlieb, S., and C.-W. Shu, 1998: Total variation diminishing Runge-Kutta schemes. Math. Comput., 67, 7385, doi:10.1090/S0025-5718-98-00913-2.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and T. L. Clark, 1991: Cloud-environment interface instability: Rising thermal calculations in two spatial dimensions. J. Atmos. Sci., 48, 527546.

    • Search Google Scholar
    • Export Citation
  • Hickel, S., 2008: Implicit turbulence modeling for large-eddy simulation. Ph.D. dissertation, Technische Universität München, 204 pp.

  • Hickel, S., and J. Larsson, 2008: An adaptive local deconvolution model for compressible turbulence. Proc. 2008 Summer Program, Stanford, CA, Stanford University Center for Turbulence Research, 85–96.

  • Hickel, S., N. A. Adams, and J. Domaradzki, 2006: An adaptive local deconvolution method for implicit LES. J. Comput. Phys., 213, 413436, doi:10.1016/j.jcp.2005.08.017.

    • Search Google Scholar
    • Export Citation
  • Hickel, S., N. A. Adams, and N. Mansour, 2007: Implicit subgrid-scale modeling for large-eddy simulation of passive-scalar mixing. Phys. Fluids, 19, 095102, doi:10.1063/1.2770522.

    • Search Google Scholar
    • Export Citation
  • Hickel, S., M. Mihatsch, and S. J. Schmidt, 2011: Implicit large eddy simulation of cavitation in micro channel flows. Proc. Third Int. Cavitation Forum, Warwick, United Kingdom, WIMRC. [Available online at https://files.warwick.ac.uk/shengcaili/browse/Proceedings+2011.]

  • Klar, J.-U., C. Breitsamter, S. Hickel, and N. A. Adams, 2011: Integrated experimental-numerical analysis of high agility aircraft wake vortex evolution. J. Aircr., 48, 20502058.

    • Search Google Scholar
    • Export Citation
  • Klein, R., 2009: Asymptotics, structure, and integration of sound-proof atmospheric flow equations. Theor. Comput. Fluid Dyn., 23, 161195.

    • Search Google Scholar
    • Export Citation
  • Klein, R., U. Achatz, D. Bresch, O. M. Knio, and P. K. Smolarkiewicz, 2010: Regime of validity of sound-proof atmospheric flow models. J. Atmos. Sci., 67, 32263237.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1981: Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res., 86 (C10), 97079714.

  • Lipps, F., 1990: On the anelastic approximation for deep convection. J. Atmos. Sci., 47, 17941798.

  • Lipps, F., and R. Hemler, 1982: A scale analysis of deep moist convection and some related numerical calculations. J. Atmos. Sci., 39, 21922210.

    • Search Google Scholar
    • Export Citation
  • Meister, A., 1999: Numerik Linearer Gleichungssysteme: Eine Einführung in Moderne Verfahren (Numerical Methods for Linear Systems of Equations: An Introduction to Modern Methods). Vieweg, 222 pp.

  • Mendez-Nunez, L. R., and J. J. Carroll, 1994: Application of the MacCormack scheme to atmospheric nonhydrostatic models. Mon. Wea. Rev., 122, 9841000.

    • Search Google Scholar
    • Export Citation
  • Ogura, Y., and N. A. Phillips, 1962: A scale analysis of deep and shallow convection in the atmosphere. J. Atmos. Sci., 19, 173179.

  • Remmler, S., and S. Hickel, 2012a: Direct and large-eddy simulation of stratified turbulence. Int. J. Heat Fluid Flow, 35, 1324.

  • Remmler, S., and S. Hickel, 2012b: Spectral structure of stratified turbulence: Direct numerical simulations and predictions by large eddy simulation. Theor. Comput. Fluid Dyn., doi:10.1007/S00162-012-0259-9, in press.

    • Search Google Scholar
    • Export Citation
  • Robert, A., 1993: Bubble convection experiments with a semi-implicit formulation of the Euler equations. J. Atmos. Sci., 50, 18651873.

    • Search Google Scholar
    • Export Citation
  • Shu, C.-W., 1997: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. ICASE Rep. 97–65, 78 pp.

  • Smolarkiewicz, P. K., and L. G. Margolin, 1994: Variational solver for elliptic problems in atmospheric flows. Appl. Math. Comput. Sci., 4, 527551.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., and A. Dörnbrack, 2008: Conservative integrals of adiabatic Durran’s equations. Int. J. Numer. Methods Fluids, 56, 15131519.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., and J. Szmelter, 2011: A nonhydrostatic unstructured-mesh soundproof model for simulation of internal gravity waves. Acta Geophys., 59, 11091134, doi:10.2478/s11600-011-0043-z.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., V. Grubis̄ić, and L. G. Margolin, 1997: On forward-in-time differencing for fluids: Stopping criteria for iterative solutions on anelastic pressure equations. Mon. Wea. Rev., 125, 647654.

    • Search Google Scholar
    • Export Citation
  • Williamson, J., 1980: Low-storage Runge-Kutta schemes. J. Comput. Phys., 35, 4856, doi:10.1016/0021-9991(80)90033-9.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 320 183 3
PDF Downloads 134 46 2