Evaluation of WRF Model Resolution on Simulated Mesoscale Winds and Surface Fluxes near Greenland

Alice K. DuVivier Cooperative Institute for Research in Environmental Sciences, and Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado

Search for other papers by Alice K. DuVivier in
Current site
Google Scholar
PubMed
Close
and
John J. Cassano Cooperative Institute for Research in Environmental Sciences, and Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado

Search for other papers by John J. Cassano in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Southern Greenland has short-lived but frequently occurring strong mesoscale barrier winds and tip jets that form when synoptic-scale atmospheric features interact with the topography of Greenland. The influence of these mesoscale atmospheric events on the ocean, particularly deep ocean convection, is not yet well understood. Because obtaining observations is difficult in this region, model simulations are essential for understanding the interaction between the atmosphere and ocean during these wind events. This paper presents results from the Weather Research and Forecasting (WRF) Model simulations run at four different resolutions (100, 50, 25, and 10 km) and forced with the ECMWF Re-Analysis Interim (ERA-Interim) product. Case study comparisons between WRF output at different resolutions, observations from the Greenland Flow Distortion Experiment (GFDex), which provides valuable in situ observations of mesoscale winds, and Quick Scatterometer (QuikSCAT) satellite data highlight the importance of high-resolution simulations for properly capturing the structure and high wind speeds associated with mesoscale wind events and surface fluxes of latent and sensible heat. In addition, the longer-term impact of mesoscale winds on the ocean is investigated by comparison of surface fluxes and winds between model resolutions over a two-month period.

Corresponding author address: Alice K. Du Vivier, University of Colorado, 216 UCB, Boulder, CO 80309. E-mail: alice.duvivier@colorado.edu

Abstract

Southern Greenland has short-lived but frequently occurring strong mesoscale barrier winds and tip jets that form when synoptic-scale atmospheric features interact with the topography of Greenland. The influence of these mesoscale atmospheric events on the ocean, particularly deep ocean convection, is not yet well understood. Because obtaining observations is difficult in this region, model simulations are essential for understanding the interaction between the atmosphere and ocean during these wind events. This paper presents results from the Weather Research and Forecasting (WRF) Model simulations run at four different resolutions (100, 50, 25, and 10 km) and forced with the ECMWF Re-Analysis Interim (ERA-Interim) product. Case study comparisons between WRF output at different resolutions, observations from the Greenland Flow Distortion Experiment (GFDex), which provides valuable in situ observations of mesoscale winds, and Quick Scatterometer (QuikSCAT) satellite data highlight the importance of high-resolution simulations for properly capturing the structure and high wind speeds associated with mesoscale wind events and surface fluxes of latent and sensible heat. In addition, the longer-term impact of mesoscale winds on the ocean is investigated by comparison of surface fluxes and winds between model resolutions over a two-month period.

Corresponding author address: Alice K. Du Vivier, University of Colorado, 216 UCB, Boulder, CO 80309. E-mail: alice.duvivier@colorado.edu
Save
  • Agustsson, H., and H. Olafsson, 2007: Simulating a severe windstorm in complex terrain. Meteor. Z., 16, 111–122, doi:10.1127/0941-2948/2007/0169.

    • Search Google Scholar
    • Export Citation
  • Bacon, S., W. J. Gould, and Y. Jia, 2003: Open-ocean convection in the Irminger Sea. Geophys. Res. Lett., 30, 1246, doi:10.1029/2002GL016271.

    • Search Google Scholar
    • Export Citation
  • Barstad, I., and S. GrønÃ¥s, 2005: Southwesterly flows over southern Norway—Mesoscale sensitivity to large-scale wind direction and speed. Tellus, 57A, 136–152, doi:10.1111/j.1600-0870.2005.00112.x.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., K. M. Hines, and L.-S. Bai, 2009: Development and testing of Polar Weather Research and Forecasting model: 2. Arctic Ocean. J. Geophys. Res., 114, D08122, doi:200910.1029/2008JD010300.

    • Search Google Scholar
    • Export Citation
  • Cassano, J., M. Higgins, and M. Seefeldt, 2011: Performance of the Weather Research and Forecasting Model for month-long pan-Arctic simulations. Mon. Wea. Rev., 139, 3469–3488.

    • Search Google Scholar
    • Export Citation
  • Charnock, H., 1955: Wind stress on a water surface. Quart. J. Roy. Meteor. Soc., 81, 639–640, doi:10.1002/qj.49708135027.

  • Comiso, J., 1999: Bootstrap sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/docs/daac/nsidc0079_bootstrap_seaice.gd.html.]

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and M. A. Shapiro, 1999: Flow response to large-scale topography: The Greenland tip jet. Tellus, 51A, 728–748.

  • Dudhia, J., 2010: WRF physics options. NCAR WRF basic tutorial, 26–30 July 2010, NCAR, Boulder, CO, 154–158.

  • Dunbar, R. S., and K. L. Perry, 2001: SeaWinds on QuikSCAT Level 3 Daily, Gridded Ocean Wind Vectors (JPL SeaWinds Project) Version 1.1. JPL Document D-20335, Jet Propulsion Laboratory, Pasadena, CA, 1–39.

  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571–591.

    • Search Google Scholar
    • Export Citation
  • Gascard, J., and R. Clarke, 1983: The formation of Labrador Sea Water. Part II: Mesoscale and smaller-scale processes. J. Phys. Oceanogr., 13, 1779–1797.

    • Search Google Scholar
    • Export Citation
  • Haine, T. W. N., S. Zhang, G. W. K. Moore, and I. A. Renfrew, 2009: On the impact of high-resolution, high-frequency meteorological forcing on Denmark Strait ocean circulation. Quart. J. Roy. Meteor. Soc., 135, 2067–2085, doi:10.1002/qj.505.

    • Search Google Scholar
    • Export Citation
  • Harden, B., I. Renfrew, and G. Petersen, 2011: A climatology of wintertime barrier winds off southeast Greenland. J. Climate, 24, 4701–4717.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Elsevier Academic Press, 535 pp.

  • Hunke, E. C., 2010: Thickness sensitivities in the CICE sea ice model. Ocean Modell., 34, 137–149, doi:10.1016/j.ocemod.2010.05.004.

    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., and M. M. Holland, 2007: Global atmospheric forcing data for Arctic ice-ocean modeling. J. Geophys. Res., 112, C04S14, doi:10.1029/2006JC003640.

    • Search Google Scholar
    • Export Citation
  • Kilpelainen, T., T. Vihma, and H. Olafsson, 2011: Modelling of spatial variability and topographic effects over Arctic fjords in Svalbard. Tellus, 63A, 223–237, doi:10.1111/j.1600-0870.2010.00481.x.

    • Search Google Scholar
    • Export Citation
  • Kolstad, E., 2008: A QuikSCAT climatology of ocean surface winds in the Nordic seas: Identification of features and comparison with the NCEP/NCAR reanalysis. J. Geophys. Res., 113, D11106, doi:10.1029/2007JD008918.

    • Search Google Scholar
    • Export Citation
  • Kwok, R., E. C. Hunke, W. Maslowski, D. Menemenlis, and J. Zhang, 2008: Variability of sea ice simulations assessed with RGPS kinematics. J. Geophys. Res., 113, C11012, doi:10.1029/2008JC004783.

    • Search Google Scholar
    • Export Citation
  • Lavender, K. L., R. E. Davis, and W. B. Owens, 2002: Observations of open-ocean deep convection in the Labrador Sea from subsurface floats. J. Phys. Oceanogr., 32, 511–526.

    • Search Google Scholar
    • Export Citation
  • Lisaeter, K. A., G. Evensen, and S. Laxon, 2007: Assimilating synthetic CryoSat sea ice thickness in a coupled ice-ocean model. J. Geophys. Res., 112, C07023, doi:10.1029/2006JC003786.

    • Search Google Scholar
    • Export Citation
  • Martin, R., and G. W. K. Moore, 2007: Air-sea interaction associated with a Greenland reverse tip jet. Geophys. Res. Lett., 34, L24802, doi:10.1029/2007GL031093.

    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., 2003: Gale force winds over the Irminger Sea to the east of Cape Farewell, Greenland. Geophys. Res. Lett., 30, 1894, doi:10.1029/2003GL018012.

    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., and I. Renfrew, 2005: Tip jets and barrier winds: A QuikSCAT climatology of high wind speed events around Greenland. J. Climate, 18, 3713–3725.

    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., R. S. Pickart, and I. A. Renfrew, 2008: Buoy observations from the windiest location in the world ocean, Cape Farewell, Greenland. Geophys. Res. Lett., 35, L18802, doi:10.1029/2008GL034845.

    • Search Google Scholar
    • Export Citation
  • Nigro, M. A., J. J. Cassano, M. A. Lazzara, and L. M. Keller, 2012: Case study of a barrier wind corner jet off the coast of the Prince Olav Mountains, Antarctica. Mon. Wea. Rev., 140, 2044–2063.

    • Search Google Scholar
    • Export Citation
  • Olafsson, H., and H. Agustsson, 2009: Gravity wave breaking in easterly flow over Greenland and associated low level barrier- and reverse tip-jets. Meteor. Atmos. Phys., 104, 191–197, doi:10.1007/s00703-009-0024-9.

    • Search Google Scholar
    • Export Citation
  • Outten, S. D., I. A. Renfrew, and G. N. Petersen, 2009: An easterly tip jet off Cape Farewell, Greenland. II: Simulations and dynamics. Quart. J. Roy. Meteor. Soc., 135, 1934–1949, doi:10.1002/qj.531.

    • Search Google Scholar
    • Export Citation
  • Petersen, G. N., and I. A. Renfrew, 2009: Aircraft-based observations of air-sea fluxes over Denmark Strait and the Irminger Sea during high wind speed conditions. Quart. J. Roy. Meteor. Soc., 135, 2030–2045, doi:10.1002/qj.355.

    • Search Google Scholar
    • Export Citation
  • Petersen, G. N., I. A. Renfrew, and G. W. K. Moore, 2009: An overview of barrier winds off southeastern Greenland during the Greenland Flow Distortion experiment. Quart. J. Roy. Meteor. Soc., 135, 1950–1967, doi:10.1002/qj.455.

    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., M. A. Spall, M. H. Ribergaard, G. Moore, and R. F. Milliff, 2003: Deep convection in the Irminger Sea forced by the Greenland tip jet. Nature, 424, 152–156.

    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., K. VÃ¥ge, G. Moore, I. A. Renfrew, M. H. Ribergaard, and H. C. Davies, 2008: Convection in the western North Atlantic subpolar gyre: Do small-scale wind events matter. Arctic-Subarctic Ocean Fluxes: Defining the Role of the Northern Seas in Climate, R. R. Dickson, J. Meincke, and P. B. Rhines, Eds., Springer, 629–652.

    • Search Google Scholar
    • Export Citation
  • Reeve, M. A., and E. W. Kolstad, 2011: The Spitsbergen South Cape tip jet. Quart. J. Roy. Meteor. Soc., 137, 1739–1748, doi:10.1002/qj.876.

    • Search Google Scholar
    • Export Citation
  • Renfrew, I. A., and Coauthors, 2008: The Greenland Flow Distortion Experiment. Bull. Amer. Meteor. Soc., 89, 1307–1324.

  • Renfrew, I. A., S. D. Outten, and G. W. K. Moore, 2009a: An easterly tip jet off Cape Farewell, Greenland. I: Aircraft observations. Quart. J. Roy. Meteor. Soc., 135, 1919–1933, doi:10.1002/qj.513.

    • Search Google Scholar
    • Export Citation
  • Renfrew, I. A., G. N. Petersen, D. A. J. Sproson, G. W. K. Moore, H. Adiwidjaja, S. Zhang, and R. North, 2009b: A comparison of aircraft-based surface-layer observations over Denmark Strait and the Irminger Sea with meteorological analyses and QuikSCAT winds. Quart. J. Roy. Meteor. Soc., 135, 2046–2066, doi:10.1002/qj.444.

    • Search Google Scholar
    • Export Citation
  • Sampe, T., and S. P. Xie, 2007: Mapping high sea winds from space: A global climatology. Bull. Amer. Meteor. Soc., 88, 1965–1978.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 3019–3032.

  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, Mesoscale and Microscale Meteorology Division, NCAR, 125 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.]

  • Smith, S. A., J. D. Doyle, A. R. Brown, and S. Webster, 2006: Sensitivity of resolved mountain drag to model resolution for MAP case-studies. Quart. J. Roy. Meteor. Soc., 132, 1467–1487, doi:10.1256/qj.05.67.

    • Search Google Scholar
    • Export Citation
  • Smith, S. D., 1988: Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J. Geophys. Res., 93 (C12), 15 467–15 472.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., and R. S. Pickart, 2003: Wind-driven recirculations and exchange in the Labrador and Irminger Seas. J. Phys. Oceanogr., 33, 1829–1845.

    • Search Google Scholar
    • Export Citation
  • Sproson, D. A. J., I. A. Renfrew, and K. J. Heywood, 2008: Atmospheric conditions associated with oceanic convection in the south-east Labrador Sea. Geophys. Res. Lett., 35, L06601, doi:10.1029/2007GL032971.

    • Search Google Scholar
    • Export Citation
  • Sproson, D. A. J., I. A. Renfrew, and K. J. Heywood, 2010: A parameterization of Greenland’s tip jets suitable for ocean or coupled climate models. J. Geophys. Res., 115, C08022, doi:10.1029/2009JC006002.

    • Search Google Scholar
    • Export Citation
  • VÃ¥ge, K., R. S. Pickart, G. W. K. Moore, and M. H. Ribergaard, 2008: Winter mixed layer development in the central Irminger Sea: The effect of strong, intermittent wind events. J. Phys. Oceanogr., 38, 541–565.

    • Search Google Scholar
    • Export Citation
  • VÃ¥ge, K., T. Spengler, H. C. Davies, and R. S. Pickart, 2009: Multi-event analysis of the westerly Greenland tip jet based upon 45 winters in ERA-40. Quart. J. Roy. Meteor. Soc., 135, 1999–2011, doi:10.1002/qj.488.

    • Search Google Scholar
    • Export Citation
  • VÃ¥ge, K., and Coauthors, 2011: The Irminger Gyre: Circulation, convection, and interannual variability. Deep-Sea Res., 58, 590–614.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 885 276 29
PDF Downloads 652 114 10