Horizontal Momentum Diffusion in GCMs Using the Dynamic Smagorinsky Model

Urs Schaefer-Rolffs Leibniz-Institut für Atmosphärenphysik, Kühlungsborn, Germany

Search for other papers by Urs Schaefer-Rolffs in
Current site
Google Scholar
PubMed
Close
and
Erich Becker Leibniz-Institut für Atmosphärenphysik, Kühlungsborn, Germany

Search for other papers by Erich Becker in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A dynamic version of Smagorinsky’s diffusion scheme is presented that is applicable for large-eddy simulations (LES) of the atmospheric dynamics. The approach is motivated (i) by the incompatibility of conventional hyperdiffusion schemes with the conservation laws, and (ii) because the conventional Smagorinsky model (which fulfills the conservation laws) does not maintain scale invariance, which is mandatory for a correct simulation of the macroturbulent kinetic energy spectrum. The authors derive a two-dimensional (horizontal) formulation of the dynamic Smagorinsky model (DSM) and present three solutions of the so-called Germano identity: the method of least squares, a solution without invariance of the Smagorinsky parameter, and a tensor-norm solution. The applicability of the tensor-norm approach is confirmed in simulations with the Kühlungsborn mechanistic general circulation model (KMCM). The standard spectral dynamical core of the model facilitates the implementation of the test filter procedure of the DSM. Various energy spectra simulated with the DSM and the conventional Smagorinsky scheme are presented. In particular, the results show that only the DSM allows for a reasonable spectrum at all scales. Latitude–height cross sections of zonal-mean fluid variables are given and show that the DSM preserves the main features of the atmospheric dynamics. The best ratio for the test-filter scale to the resolution scale is found to be 1.33, resulting in dynamically determined Smagorinsky parameters cS from 0.10 to 0.22 in the troposphere. This result is very similar to other values of cS found in previous three-dimensional applications of the DSM.

Corresponding author address: Urs Schaefer-Rolffs, Leibniz-Institut für Atmosphärenphysik an der Universität Rostock, Schlossstr. 6, 18225 Kühlungsborn, Germany. E-mail: schaefer-rolffs@iap-kborn.de

Abstract

A dynamic version of Smagorinsky’s diffusion scheme is presented that is applicable for large-eddy simulations (LES) of the atmospheric dynamics. The approach is motivated (i) by the incompatibility of conventional hyperdiffusion schemes with the conservation laws, and (ii) because the conventional Smagorinsky model (which fulfills the conservation laws) does not maintain scale invariance, which is mandatory for a correct simulation of the macroturbulent kinetic energy spectrum. The authors derive a two-dimensional (horizontal) formulation of the dynamic Smagorinsky model (DSM) and present three solutions of the so-called Germano identity: the method of least squares, a solution without invariance of the Smagorinsky parameter, and a tensor-norm solution. The applicability of the tensor-norm approach is confirmed in simulations with the Kühlungsborn mechanistic general circulation model (KMCM). The standard spectral dynamical core of the model facilitates the implementation of the test filter procedure of the DSM. Various energy spectra simulated with the DSM and the conventional Smagorinsky scheme are presented. In particular, the results show that only the DSM allows for a reasonable spectrum at all scales. Latitude–height cross sections of zonal-mean fluid variables are given and show that the DSM preserves the main features of the atmospheric dynamics. The best ratio for the test-filter scale to the resolution scale is found to be 1.33, resulting in dynamically determined Smagorinsky parameters cS from 0.10 to 0.22 in the troposphere. This result is very similar to other values of cS found in previous three-dimensional applications of the DSM.

Corresponding author address: Urs Schaefer-Rolffs, Leibniz-Institut für Atmosphärenphysik an der Universität Rostock, Schlossstr. 6, 18225 Kühlungsborn, Germany. E-mail: schaefer-rolffs@iap-kborn.de
Save
  • Becker, E., 2001: Symmetric stress tensor formulation of horizontal momentum diffusion in global models of atmospheric circulation. J. Atmos. Sci., 58, 269282.

    • Search Google Scholar
    • Export Citation
  • Becker, E., 2003: Frictional heating in global climate models. Mon. Wea. Rev., 131, 508520.

  • Becker, E., 2004: Direct heating rates associated with gravity wave saturation. J. Atmos. Sol. Terr. Phys., 66, 683696.

  • Becker, E., 2009: Sensitivity of the upper mesosphere to the lorenz energy cycle of the troposphere. J. Atmos. Sci., 66, 647666.

  • Becker, E., and G. Schmitz, 2001: Interaction between extratropical stationary waves and the zonal mean circulation. J. Atmos. Sci., 58, 462480.

    • Search Google Scholar
    • Export Citation
  • Becker, E., and U. Burkhardt, 2007: Nonlinear horizontal diffusion for GCMs. Mon. Wea. Rev., 135, 14391454.

  • Bourke, W., B. McAvaney, K. Puri, and R. Thurling, 1977: Global modeling of atmospheric flow by spectral methods. Methods Comput. Phys., 17, 267324.

    • Search Google Scholar
    • Export Citation
  • Burchard, H., 2002: Applied Turbulence Modelling in Marine Waters. Vol. 100, Lecture Notes in Earth Sciences, Springer, 215 pp.

  • Fritts, D., L. Wang, J. Werne, T. Lund, and K. Wan, 2009a: Gravity wave instability dynamics at high Reynolds numbers. Part I: Wave field evolution at large amplitudes and high frequencies. J. Atmos. Sci., 66, 11261148.

    • Search Google Scholar
    • Export Citation
  • Fritts, D., L. Wang, J. Werne, T. Lund, and K. Wan, 2009b: Gravity wave instability dynamics at high Reynolds numbers. Part II: Turbulence evolution, structure, and anisotropy. J. Atmos. Sci., 66, 11491171.

    • Search Google Scholar
    • Export Citation
  • Gent, P., and J. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155.

  • Germano, M., 1992: Turbulence: The filtering approach. J. Fluid Mech., 238, 325336.

  • Germano, M., U. Piomelli, P. Moin, and W. Cabot, 1991: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A, 3, 17601765.

  • Hamilton, K., Y. Takahashi, and W. Ohfuchi, 2008: Mesoscale spectrum of atmospheric motions investigated in a very fine resolution global general circulation model. J. Geophys. Res., 113, D18110, doi:10.1029/2008JD009785.

    • Search Google Scholar
    • Export Citation
  • Koshyk, J., and K. Hamilton, 2001: The horizontal kinetic energy spectrum and spectral budget simulated by a high-resolution troposphere-stratosphere-mesosphere GCM. J. Atmos. Sci., 58, 329348.

    • Search Google Scholar
    • Export Citation
  • Kraichnan, R., 1976: Eddy viscosity in two and three dimensions. J. Atmos. Sci., 33, 15211536.

  • Kumar, V., J. Kleissl, C. Meneveau, and M. Parlange, 2006: Large-eddy simulation of a diurnal cycle of the atmospheric boundary layer: Atmospheric stability and scaling issues. Water Resour. Res., 42, W06D09, doi:10.1029/2005WR004651.

    • Search Google Scholar
    • Export Citation
  • Kumar, V., G. Svensson, A. Holtslag, C. Meneveau, and M. Parlange, 2010: Impact of surface flux formulations and geostrophic forcing on large-eddy simulations of diurnal atmospheric boundary layer flow. J. Appl. Meteor. Climatol., 49, 14961516.

    • Search Google Scholar
    • Export Citation
  • Lesieur, M., O. Metais, and P. Comte, 2005: Large-Eddy Simulations of Turbulence. Cambridge University Press, 232 pp.

  • Lilly, D., 1992: A proposed modification of the germano subgrid-scale closure method. Phys. Fluids A, 4, 633635.

  • Lindborg, E., 2006: The energy cascade in a strongly stratified fluid. J. Fluid Mech., 550, 207242.

  • Lorenz, E., 1967: The Nature and Theory of the General Circulation of the Atmosphere. WMO Monogr., No. 218, WMO, 161 pp.

  • Meneveau, C., and J. Katz, 2000: Scale-invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid Mech., 32, 132.

  • Moin, P., 1991: A new approach for large eddy simulation of turbulence and scalar transport. New Approaches and Concepts in Turbulence: Proceedings from the Monte Verita Colloquium on Turbulence, T. Dracos and A. Tsinober, Eds., Birkhäuser, 331–339.

  • Moin, P., and J. Kim, 1982: Numerical investigation of turbulent channel flow. J. Fluid Mech., 118, 341377.

  • Nastrom, G., and K. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42, 950960.

    • Search Google Scholar
    • Export Citation
  • Oberlack, M., 2000: Symmetrie, Invarianz und Selbstähnlichkeit in der Turbulenz (Habilitation) (Symmetry, Invariance, and Self-Similarity in Turbulence). RWTH Aachen, 187 pp.

  • Porté-Agel, F., C. Meneveau, and M. Parlange, 2000: A scale-dependent dynamic model for large-eddy simulation: Application to a neutral atmospheric boundary layer. J. Fluid Mech., 415, 261284.

    • Search Google Scholar
    • Export Citation
  • Prandtl, L., 1942: Führer durch die Strömungslehre (Essentials of Fluid Mechanics). Fried. Vieweg & Sohn, 382 pp.

  • Ronchi, C., M. Ypma, and M. Canuto, 1992: On the application of the Germano identity to subgrid-scale modeling. Phys. Fluids A, 4, 29272929.

    • Search Google Scholar
    • Export Citation
  • Schumann, U., 1993: Direct and large-eddy simulation of turbulence—Summary of the state-of-the-art. Lecture Series: Introduction to the Modeling of Turbulence, W. Kollmann, Ed., Von Karman Institute, 123–258.

  • Simmons, A., and D. Burridge, 1981: An energy and angular-momentum conserving vertical finite-difference scheme and hybrid vertical coordinates. Mon. Wea. Rev., 109, 758766.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. I: The basic experiment. Mon. Wea. Rev., 91, 99164.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1993: Some historical remarks on the use of nonlinear viscosities. Large Eddy Simulation of Complex Engineering and Geophysical Flows, B. Galperin and St. A. Orszag, Eds., Cambridge University Press, 3–36.

  • Taylor, G., 1920: Diffusion by continuous movements. Proc. London Math. Soc., 20, 196212.

  • Vreman, B., B. Geurts, and H. Kuerten, 1997: Large-eddy simulation of the turbulent mixing layer. J. Fluid Mech., 339, 357390.

  • Waite, M., 2011: Stratified turbulence at the buoyancy scale. Phys. Fluids, 23, 066602, doi:10.1063/1.3599699.

  • Zang, Y., R. L. Street, and J. R. Koseff, 1993: A dynamic mixed subgrid-scale model and its application to turbulent recirculation flows. Phys. Fluids A, 5, 31863196.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 396 141 14
PDF Downloads 346 112 13