Object-Based Evaluation of a Storm-Scale Ensemble during the 2009 NOAA Hazardous Weather Testbed Spring Experiment

Aaron Johnson School of Meteorology, University of Oklahoma, and Center for Analysis and Prediction of Storms, Norman, Oklahoma

Search for other papers by Aaron Johnson in
Current site
Google Scholar
PubMed
Close
and
Xuguang Wang School of Meteorology, University of Oklahoma, and Center for Analysis and Prediction of Storms, Norman, Oklahoma

Search for other papers by Xuguang Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Object-based verification of deterministic forecasts from a convection-allowing ensemble for the 2009 NOAA Hazardous Weather Testbed Spring Experiment is conducted. The average of object attributes is compared between forecasts and observations and between forecasts from subensembles with different model dynamics. Forecast accuracy for the full ensemble and the subensembles with different model dynamics is also evaluated using two object-based measures: the object-based threat score (OTS) and the median of maximum interest (MMI).

Forecast objects aggregated from the full ensemble are generally more numerous, have a smaller average area, more circular average aspect ratio, and more eastward average centroid location than observed objects after the 1-h lead time. At the 1-h lead time, forecast objects are less numerous than observed objects. Members using the Advanced Research Weather Research and Forecasting Model (ARW) have fewer objects, more linear average aspect ratio, and smaller average area than members using the Nonhydrostatic Mesoscale Model (NMM). The OTS aggregated from the full ensemble is more consistent with the diurnal cycles of the traditional equitable threat score (ETS) than the MMI because the OTS places more weight on large objects, while the MMI weights all objects equally. The group of ARW members has higher OTS than the group of NMM members except at the 1-h lead time when the group of NMM members has more accurate maintenance and evolution of initially present precipitation systems provided by radar data assimilation. The differences between the ARW and NMM accuracy are more pronounced with the OTS than the MMI and the ETS.

Corresponding author address: Dr. Xuguang Wang, School of Meteorology, University of Oklahoma, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: xuguang.wang@ou.edu

Abstract

Object-based verification of deterministic forecasts from a convection-allowing ensemble for the 2009 NOAA Hazardous Weather Testbed Spring Experiment is conducted. The average of object attributes is compared between forecasts and observations and between forecasts from subensembles with different model dynamics. Forecast accuracy for the full ensemble and the subensembles with different model dynamics is also evaluated using two object-based measures: the object-based threat score (OTS) and the median of maximum interest (MMI).

Forecast objects aggregated from the full ensemble are generally more numerous, have a smaller average area, more circular average aspect ratio, and more eastward average centroid location than observed objects after the 1-h lead time. At the 1-h lead time, forecast objects are less numerous than observed objects. Members using the Advanced Research Weather Research and Forecasting Model (ARW) have fewer objects, more linear average aspect ratio, and smaller average area than members using the Nonhydrostatic Mesoscale Model (NMM). The OTS aggregated from the full ensemble is more consistent with the diurnal cycles of the traditional equitable threat score (ETS) than the MMI because the OTS places more weight on large objects, while the MMI weights all objects equally. The group of ARW members has higher OTS than the group of NMM members except at the 1-h lead time when the group of NMM members has more accurate maintenance and evolution of initially present precipitation systems provided by radar data assimilation. The differences between the ARW and NMM accuracy are more pronounced with the OTS than the MMI and the ETS.

Corresponding author address: Dr. Xuguang Wang, School of Meteorology, University of Oklahoma, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: xuguang.wang@ou.edu
Save
  • Baldwin, M. E., and S. Lakshmivarahan, 2003: Development of an events-oriented verification system using data mining and image processing algorithms. Preprints, Third Conf. on Artificial Intelligence, Long Beach, CA, Amer. Meteor. Soc., 4.6. [Available online at http://ams.confex.com/ams/pdfpapers/57821.pdf.]

  • Baldwin, M. E., S. Lakshmivarahan, and J. S. Kain, 2001: Verification of mesoscale features in NWP models. Preprints, Ninth Conf. on Mesoscale Processes, Ft. Lauderdale, FL, Amer. Meteor. Soc., 255–258.

  • Benjamin, S. G., G. A. Grell, J. M. Brown, T. G. Smirnova, and R. Bleck, 2004: Mesoscale weather prediction with the RUC hybrid isentropic-terrain-following coordinate model. Mon. Wea. Rev., 132, 473494.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and H. Morrison, 2012: Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon. Wea. Rev., 140, 202225.

    • Search Google Scholar
    • Export Citation
  • Cai, H., M. Steiner, J. Pinto, B. G. Brown, and P. He, 2011: Assessment of numerical weather prediction model storm forecasts using an object-based approach. Preprints, 24th Conf. on Weather Analysis and Forecasting/20th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 8A.5. [Available online at http://ams.confex.com/ams/91Annual/webprogram/Paper182479.html.]

  • Case, J. L., J. Manobianco, J. E. Lane, C. D. Immer, and F. J. Merceret, 2004: An objective technique for verifying sea breezes in high-resolution numerical weather prediction models. Wea. Forecasting, 19, 690705.

    • Search Google Scholar
    • Export Citation
  • Case, J. L., S. V. Kumar, J. Srikishen, and G. J. Jedlovec, 2011: Improving numerical weather predictions of summertime precipitation over the southeastern United States through a high-resolution initialization of the surface state. Wea. Forecasting, 26, 785807.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., W. A. Gallus, and T. C. Chen, 2007: Comparison of the diurnal precipitation cycle in convection-resolving and non-convection-resolving mesoscale models. Mon. Wea. Rev., 135, 34563473.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., W. A. Gallus, and T. C. Chen, 2008: Contributions of mixed physics versus perturbed initial/lateral boundary conditions to ensemble-based precipitation forecast skill. Mon. Wea. Rev., 136, 21402156.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., W. A. Gallus, M. Xue, and F. Kong, 2009: A comparison of precipitation forecast skill between small convection-allowing and -parameterizing ensembles. Wea. Forecasting, 24, 11211140.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., W. A. Gallus, M. Xue, and F. Kong, 2010a: Growth of spread in convection-allowing and convection-parameterizing ensembles. Wea. Forecasting, 25, 594612.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., W. A. Gallus, M. Xue, and F. Kong, 2010b: Convection-allowing and convection-parameterizing ensemble forecasts of a mesoscale convective vortex and associated severe weather environment. Wea. Forecasting, 25, 10521081.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and Coauthors, 2011: Probabilistic precipitation forecast skill as a function of ensemble size and spatial scale in a convection-allowing ensemble. Mon. Wea. Rev., 139, 14101418.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., K. L. Elmore, J. S. Kain, S. J. Weiss, M. Xue, and M. L. Weisman, 2010: Evaluation of WRF model output for severe weather forecasting from the 2008 NOAA Hazardous Weather Testbed Spring Experiment. Wea. Forecasting, 25, 408427.

    • Search Google Scholar
    • Export Citation
  • Davis, C., B. Brown, and R. Bullock, 2006a: Object-based verification of precipitation forecasts. Part I: Methodology and application to mesoscale rain areas. Mon. Wea. Rev., 134, 17721784.

    • Search Google Scholar
    • Export Citation
  • Davis, C., B. Brown, and R. Bullock, 2006b: Object-based verification of precipitation forecasts. Part II: Application to convective rain systems. Mon. Wea. Rev., 134, 17851795.

    • Search Google Scholar
    • Export Citation
  • Davis, C., B. Brown, R. Bullock, and J. Halley-Gotway, 2009: The Method for Object-Based Diagnostic Evaluation (MODE) applied to numerical forecasts from the 2005 NSSL/SPC Spring Program. Wea. Forecasting, 24, 12521267.

    • Search Google Scholar
    • Export Citation
  • Done, J., C. A. Davis, and M. L. Weisman, 2004: The next generation of NWP: Explicit forecasts of convection using the Weather Research and Forecast (WRF) model. Atmos. Sci. Lett., 5, 110117.

    • Search Google Scholar
    • Export Citation
  • Du, J., and Coauthors, 2006: New dimension of NCEP Short-Range Ensemble Forecasting (SREF) system: Inclusion of WRF members. Preprints, WMO Expert Team Meeting on Ensemble Prediction System, Exeter, United Kingdom, WMO, 2 pp. [Available online at http://www.wcrp-climate.org/WGNE/BlueBook/2006/individual-articles/05_Du_Jun_WMO06.pdf.]

  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., and J. L. McBride, 2000: Verification of precipitation in weather systems: Determination of systematic errors. J. Hydrol., 239, 179202.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., and W. A. Gallus, 2009: Toward better understanding of the Contiguous Rain Area (CRA) method for spatial forecast verification. Wea. Forecasting, 24, 14011415.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51, 249280.

  • Fowle, M. A., and P. J. Roebber, 2003: Short-range (0–48 h) numerical prediction of convective occurrence, mode, and location. Wea. Forecasting, 18, 782794.

    • Search Google Scholar
    • Export Citation
  • Gallus, W. A., 2010: Application of object-based verification techniques to ensemble precipitation forecasts. Wea. Forecasting, 25, 144158.

    • Search Google Scholar
    • Export Citation
  • Gallus, W. A., N. A. Snook, and E. V. Johnson, 2008: Spring and summer severe weather reports over the Midwest as a function of convective mode: A preliminary study. Wea. Forecasting, 23, 101113.

    • Search Google Scholar
    • Export Citation
  • Gao, J.-D., M. Xue, K. Brewster, and K. K. Droegemeier, 2004: A three-dimensional variational data analysis method with recursive filter for Doppler radars. J. Atmos. Oceanic Technol., 21, 457469.

    • Search Google Scholar
    • Export Citation
  • Gilleland, E., T. C. M. Lee, J. Halley Gotway, R. G. Bullock, and B. G. Brown, 2008: Computationally efficient spatial forecast verification using Baddeley’s delta image metric. Mon. Wea. Rev., 136, 17471757.

    • Search Google Scholar
    • Export Citation
  • Gilleland, E., D. Ahijevych, B. G. Brown, B. Casati, and E. E. Ebert, 2009: Intercomparison of spatial forecast verification methods. Wea. Forecasting, 24, 14161430.

    • Search Google Scholar
    • Export Citation
  • Grams, J. S., W. A. Gallus, S. E. Koch, L. S. Wharton, A. Loughe, and E. E. Ebert, 2006: The use of a modified Ebert–McBride technique to evaluate mesoscale model QPF as a function of convective system morphology during IHOP 2002. Wea. Forecasting, 21, 288306.

    • Search Google Scholar
    • Export Citation
  • Hagemeyer, B. C., 1991: A lower-tropospheric thermodynamic climatology for March through September: Some implications for thunderstorm forecasting. Wea. Forecasting, 6, 254270.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 1999: Hypothesis tests for evaluating numerical precipitation forecasts. Wea. Forecasting, 14, 155167.

  • Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120.

    • Search Google Scholar
    • Export Citation
  • Hu, M., M. Xue, and K. Brewster, 2006: 3DVAR and cloud analysis with WSR-88D level-II data for the prediction of Fort Worth tornadic thunderstorms. Part I: Cloud analysis and its impact. Mon. Wea. Rev., 134, 675698.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2003: A nonhydrostatic model based on a new approach. Meteor. Atmos. Phys., 82, 271285.

  • Johnson, A., and X. Wang, 2012: Verification and calibration of neighborhood and object-based probabilistic precipitation forecasts from a multimodel convection-allowing ensemble. Mon. Wea. Rev., 140, 30543077.

    • Search Google Scholar
    • Export Citation
  • Johnson, A., X. Wang, F. Kong, and M. Xue, 2011a: Hierarchical cluster analysis of a convection-allowing ensemble during the Hazardous Weather Testbed 2009 Spring Experiment. Part I: Development of object-oriented cluster analysis method for precipitation fields. Mon. Wea. Rev., 139, 36733693.

    • Search Google Scholar
    • Export Citation
  • Johnson, A., X. Wang, M. Xue, and F. Kong, 2011b: Hierarchical cluster analysis of a convection-allowing ensemble during the Hazardous Weather Testbed 2009 Spring Experiment. Part II: Season-long ensemble clustering and implication for optimal ensemble design. Mon. Wea. Rev., 139, 36943710.

    • Search Google Scholar
    • Export Citation
  • Jolliffe, I. T., 2007: Uncertainty and inference for verification measures. Wea. Forecasting, 22, 637650.

  • Kain, J., and Coauthors, 2010: Assessing advances in the assimilation of radar data and other mesoscale observations within a collaborative forecasting-research environment. Wea. Forecasting, 25, 15101521.

    • Search Google Scholar
    • Export Citation
  • Kong, F., and Coauthors, 2007: Preliminary analysis on the real-time storm-scale ensemble forecasts produced as a part of the NOAA Hazardous Weather Testbed 2007 Spring Experiment. Preprints, 22nd Conf. on Weather Analysis and Forecasting/18th Conf. on Numerical Weather Prediction, Park City, UT, Amer. Meteor. Soc., 3B.2. [Available online at https://ams.confex.com/ams/22WAF18NWP/techprogram/paper_124667.htm.]

  • Kong, F., and Coauthors, 2008: Real-time storm-scale ensemble forecast 2008 Spring Experiment. Preprints, 24th Conf. on Several Local Storms, Savannah, GA, Amer. Meteor. Soc., 12.3. [Available online at https://ams.confex.com/ams/24SLS/techprogram/paper_141827.htm.]

  • Kong, F., and Coauthors, 2009: A real-time storm-scale ensemble forecast system: 2009 Spring Experiment. Preprints, 23rd Conf. on Weather Analysis and Forecasting/19th Conf. on Numerical Weather Prediction, Omaha, NE, Amer. Meteor. Soc., 16A.3. [Available online at https://ams.confex.com/ams/23WAF19NWP/techprogram/paper_154118.htm.]

  • Kong, F., and Coauthors, 2010: Evaluation of CAPS multi-model storm-scale ensemble forecast for the NOAA HWT 2010 Spring Experiment. Preprints, 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., P4.18. [Available online at https://ams.confex.com/ams/25SLS/techprogram/paper_175822.htm.]

  • Lacis, A. A., and J. E. Hansen, 1974: A parameterization for the absorption of solar radiation in the earth’s atmosphere. J. Atmos. Sci., 31, 118133.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., S. Caine, P. T. May, J. Pinto, C. Jakob, M. J. Manton, and S. T. Siems, 2011: A method for validating convection-permitting models using an automated convective-cell tracking algorithm. Preprints, 24th Conf. on Weather Analysis and Forecasting/20th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 8A.4. [Available online at https://ams.confex.com/ams/91Annual/webprogram/24WAF20NWP.html.]

  • Lin, Y., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092.

    • Search Google Scholar
    • Export Citation
  • Marchok, T., 2002: How the NCEP tropical cyclone tracker works. Preprints, 25th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., P1.13. [Available online at http://ams.confex.com/ams/pdfpapers/37628.pdf.]

  • Marzban, C., and S. Sandgathe, 2006: Cluster analysis for verification of precipitation fields. Wea. Forecasting, 21, 824838.

  • Marzban, C., and S. Sandgathe, 2008: Cluster analysis for object-oriented verification of fields: A variation. Mon. Wea. Rev., 136, 10131025.

    • Search Google Scholar
    • Export Citation
  • Micheas, A. C., N. I. Fox, S. A. Lack, and C. K. Wikle, 2007: Cell identification and verification of QPF ensembles using shape analysis techniques. J. Hydrol., 343, 105116.

    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., 1995: The coefficients of correlation and determination as measures of performance in forecast verification. Wea. Forecasting, 10, 681688.

    • Search Google Scholar
    • Export Citation
  • Nachamkin, J. E., S. Chen, and J. Schmidt, 2005: Evaluation of heavy precipitation forecasts using composite-based methods: A distributions-oriented approach. Mon. Wea. Rev., 133, 21632177.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., W. G. Cheon, S. Y. Hong, and S. Raasch, 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107, 421427.

    • Search Google Scholar
    • Export Citation
  • Panofsky, H. A., and G. W. Brier, 1968: Some Applications of Statistics to Meteorology. The Pennsylvania State University, 224 pp.

  • Roebber, P. J., D. M. Schultz, and R. Romero, 2002: Synoptic regulation of the 3 May 1999 tornado outbreak. Wea. Forecasting, 17, 399429.

    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., D. M. Schultz, B. A. Colle, and D. J. Stensrud, 2004: Toward improved prediction: High-resolution and ensemble modeling systems in operations. Wea. Forecasting, 19, 936949.

    • Search Google Scholar
    • Export Citation
  • Rogers, E., D. G. Deaven, and G. J. DiMego, 1995: The regional analysis system for the operational “early” eta model: Original 80-km configuration and recent changes. Wea. Forecasting, 10, 810825.

    • Search Google Scholar
    • Export Citation
  • Schaffer, C. J., W. A. Gallus, and M. Segal, 2011: Improving probabilistic ensemble forecasts of convection through the application of QPF–POP relationships. Wea. Forecasting, 26, 319336.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and Coauthors, 2009: Next-day convection-allowing WRF model guidance: A second look at 2-km versus 4-km grid spacing. Mon. Wea. Rev., 137, 33513372.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and Coauthors, 2010: Toward improved convection-allowing ensembles: Model physics sensitivities and optimizing probabilistic guidance with small ensemble membership. Wea. Forecasting, 25, 263280.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032.

  • Skamarock, W. C., and J. B. Klemp, 2008: A time split non hydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227 (7), 34653485.

    • Search Google Scholar
    • Export Citation
  • Skok, G., J. Tribbia, and J. Rakovec, 2010: Object-based analysis and verification of WRF model precipitation in the low- and midlatitude Pacific Ocean. Mon. Wea. Rev., 138, 45614575.

    • Search Google Scholar
    • Export Citation
  • Smith, B. B., and S. L. Mullen, 1993: An evaluation of sea level cyclone forecasts produced by NMC’s nested-grid model and global spectral model. Wea. Forecasting, 8, 3756.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., and Coauthors, 2003: Microphysics, radiation, and surface processes in the Goddard Cumulus Ensemble (GCE) model. Meteor. Atmos. Phys., 82, 97137.

    • Search Google Scholar
    • Export Citation
  • Templeton, J. I., and T. D. Keenan, 1982: Tropical cyclone strike probability forecasting in the Australian region. Bureau of Meteorology Tech. Rep. 49, Melbourne, Victoria, Australia, 18 pp. [Available from Bureau of Meteorology, GPO Box 1289K, Melbourne, VIC 3001, Australia.]

  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., 1975: Diurnal variations in precipitation and thunderstorm frequency over the conterminous United States. Mon. Wea. Rev., 103, 406419.

    • Search Google Scholar
    • Export Citation
  • Wang, X., and C. H. Bishop, 2005: Improvement of ensemble reliability with a new dressing kernel. Quart. J. Roy. Meteor. Soc., 131, 965986.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., C. Davis, W. Wang, K. W. Manning, and J. B. Klemp, 2008: Experiences with 0–36-h explicit convective forecasts with the WRF-ARW model. Wea. Forecasting, 23, 407437.

    • Search Google Scholar
    • Export Citation
  • Weiss, S., J. Kain, J. J. Levit, M. E. Baldwin, and D. R. Bright, 2004: Examination of several different versions of the WRF model for the prediction of severe convective weather: The SPC/NSSL Spring Program 2004. Preprints, 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., 17.1. [Available online at https://ams.confex.com/ams/11aram22sls/techprogram/paper_82052.htm.]

  • Weiss, S., and Coauthors, 2009: NOAA Hazardous Weather Testbed Experimental Forecast Program Spring Experiment 2009: Program overview and operations plan. NOAA, 50 pp. [Available online at hwt.nssl.noaa.gov/Spring_2009/Spring_Experiment_2009_ops_plan_18May_v7.pdf.]

  • Wernli, H., M. Paulat, M. Hagen, and C. Frei, 2008: SAL—A novel quality measure for the verification of quantitative precipitation forecasts. Mon. Wea. Rev., 136, 44704487.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences: An Introduction. 2nd ed. Academic Press, 467 pp.

  • Xue, M., K. K. Droegemeier, and V. Wong, 2000: The Advanced Regional Prediction System (ARPS)—A multiscale nonhydrostatic atmospheric simulation and prediction tool. Part I: Model dynamics and verification. Meteor. Atmos. Phys., 75, 161193.

    • Search Google Scholar
    • Export Citation
  • Xue, M., and Coauthors, 2001: The Advanced Regional Prediction System (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications. Meteor. Atmos. Phys., 76, 143166.

    • Search Google Scholar
    • Export Citation
  • Xue, M., D.-H. Wang, J.-D. Gao, K. Brewster, and K. K. Droegemeier, 2003: The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation. Meteor. Atmos. Phys., 82, 139170.

    • Search Google Scholar
    • Export Citation
  • Xue, M., and Coauthors, 2007: CAPS realtime storm-scale ensemble and high-resolution forecasts as part of the NOAA hazardous weather testbed 2007 spring experiment. Preprints, 22nd Conf. on Weather Analysis and Forecasting/18th Conf. on Numerical Weather Prediction, Salt Lake City, UT, Amer. Meteor. Soc., 3B.1. [Available online at https://ams.confex.com/ams/22WAF18NWP/techprogram/paper_124587.htm.]

  • Xue, M., and Coauthors, 2008: CAPS realtime storm-scale ensemble and high-resolution forecasts as part of the NOAA Hazardous Weather Testbed 2008 Spring Experiment. Preprints, 24th Conf. on Several Local Storms, Savannah, GA, Amer. Meteor. Soc., 12.2. [Available online at https://ams.confex.com/ams/24SLS/techprogram/paper_142036.htm.]

  • Xue, M., and Coauthors, 2009: CAPS realtime 4-km multi-model convection-allowing ensemble and 1-km convection-resolving forecasts for the NOAA Hazardous Weather Testbed 2009 Spring Experiment. Preprints, 23rd Conf. on Weather Analysis and Forecasting/19th Conf. on Numerical Weather Prediction, Omaha, NE, Amer. Meteor. Soc., 16A.2. [Available online at https://ams.confex.com/ams/23WAF19NWP/techprogram/paper_154323.htm.]

  • Xue, M., and Coauthors, 2010: CAPS realtime storm scale ensemble and high resolution forecasts for the NOAA Hazardous Weather Testbed 2010 Spring Experiment. Preprints, 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 7B.3. [Available online at https://ams.confex.com/ams/25SLS/webprogram/meeting.html.]

  • Zhang, J., K. Howard, and J. J. Gourley, 2005: Constructing three-dimensional multiple-radar reflectivity mosaics: Examples of convective storms and stratiform rain echoes. J. Atmos. Oceanic Technol., 22, 3042.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 241 74 8
PDF Downloads 157 50 3