The Influence of Soil Moisture on the Planetary Boundary Layer and on Cumulus Convection over an Isolated Mountain. Part I: Observations

Xin Zhou University of Wyoming, Laramie, Wyoming

Search for other papers by Xin Zhou in
Current site
Google Scholar
PubMed
Close
and
Bart Geerts University of Wyoming, Laramie, Wyoming

Search for other papers by Bart Geerts in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Data collected around the Santa Catalina Mountains in Arizona as part of the Cumulus Photogrammetric, In Situ and Doppler Observations (CuPIDO) experiment during the 2006 summer monsoon season are used to investigate the effect of soil moisture on the surface energy balance, boundary layer (BL) characteristics, thermally forced orographic circulations, and orographic cumulus convection. An unusual wet spell allows separation of the two-month campaign in a wet and a dry soil period. Days in the wet soil period tend to have a higher surface latent heat flux, lower soil and air temperatures, a more stable and shallower BL, and weaker solenoidal forcing resulting in weaker anabatic flow, in comparison with days in the dry soil period. The wet soil period is also characterized by higher humidity and moist static energy in the BL, implying a lower cumulus cloud base and higher convective available potential energy. Therefore, this period witnesses rather early growth of orographic cumulus convection, growing rapidly to the cumulonimbus stage, often before noon, and producing precipitation rather efficiently, with relatively little lightning. Data alone do not allow discrimination between soil moisture and advected airmass characteristics in explaining these differences. Hence, the need for a numerical sensitivity experiment, in Part II of this study.

Corresponding author address: Bart Geerts, Department of Atmospheric Science, University of Wyoming, 6034 Engineering Building, Laramie, WY 82071. E-mail: geerts@uwyo.edu

Abstract

Data collected around the Santa Catalina Mountains in Arizona as part of the Cumulus Photogrammetric, In Situ and Doppler Observations (CuPIDO) experiment during the 2006 summer monsoon season are used to investigate the effect of soil moisture on the surface energy balance, boundary layer (BL) characteristics, thermally forced orographic circulations, and orographic cumulus convection. An unusual wet spell allows separation of the two-month campaign in a wet and a dry soil period. Days in the wet soil period tend to have a higher surface latent heat flux, lower soil and air temperatures, a more stable and shallower BL, and weaker solenoidal forcing resulting in weaker anabatic flow, in comparison with days in the dry soil period. The wet soil period is also characterized by higher humidity and moist static energy in the BL, implying a lower cumulus cloud base and higher convective available potential energy. Therefore, this period witnesses rather early growth of orographic cumulus convection, growing rapidly to the cumulonimbus stage, often before noon, and producing precipitation rather efficiently, with relatively little lightning. Data alone do not allow discrimination between soil moisture and advected airmass characteristics in explaining these differences. Hence, the need for a numerical sensitivity experiment, in Part II of this study.

Corresponding author address: Bart Geerts, Department of Atmospheric Science, University of Wyoming, 6034 Engineering Building, Laramie, WY 82071. E-mail: geerts@uwyo.edu
Save
  • Adams, D. K., and A. C. Comrie, 1997: The North American monsoon. Bull. Amer. Meteor. Soc., 78, 2197–2213.

  • Atlas, R., N. Wolfson, and J. Terry, 1993: The effect of SST and soil moisture anomalies on GLA model simulations of the 1988 U.S. summer drought. J. Climate, 6, 2034–2048.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., 1984: Daytime boundary-layer evolution over mountainous terrain. Part I: Observations of the dry circulations. Mon. Wea. Rev., 112, 340–356.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., 1986: Daytime boundary layer evolution over mountainous terrain. Part II: Numerical studies of upslope flow duration. Mon. Wea. Rev., 114, 1112–1130.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., and C. L. B. Schaaf, 1987: Thunderstorm genesis zones in the Colorado Rocky Mountains as determined by traceback of geosynchronous satellite images. Mon. Wea. Rev., 115, 463–476.

    • Search Google Scholar
    • Export Citation
  • Barthlott, C., and Coauthors, 2011: Initiation of deep convection at marginal instability in an ensemble of mesoscale models: A case-study from COPS. Quart. J. Roy. Meteor. Soc., 137, 118–136.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., J. H. Ball, A. C. M. Beljaars, M. J. Miller, and P. A. Viterbo, 1996: The land surface-atmosphere interaction: A review based on observational and global modeling perspectives. J. Geophys. Res., 101 (D3), 7209–7225.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., J. D. Tuttle, D. A. Ahijevych, and S. B. Trier, 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59, 2033–2056.

    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., S. G. Benjamin, G. S. Forbes, and Y.-F. Li, 1983: Elevated mixed layers in the regional severe storm environment: Conceptual model and case studies. Mon. Wea. Rev., 111, 1453–1474.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and R. Avissar, 1994: The impact of land-surface wetness heterogeneity on mesoscale heat fluxes. J. Appl. Meteor., 33, 1323–1340.

    • Search Google Scholar
    • Export Citation
  • Damiani, R., and Coauthors, 2008: The cumulus, photogrammetric, in situ, and Doppler observations experiment of 2006. Bull. Amer. Meteor. Soc., 89, 57–73.

    • Search Google Scholar
    • Export Citation
  • Demko, J. C., and B. Geerts, 2010a: A numerical study of the evolving convective boundary layer and orographic circulation around the Santa Catalina Mountains in Arizona. Part I: Circulation without deep convection. Mon. Wea. Rev., 138, 1902–1922.

    • Search Google Scholar
    • Export Citation
  • Demko, J. C., and B. Geerts, 2010b: A numerical study of the evolving convective boundary layer and orographic circulation around the Santa Catalina Mountains in Arizona. Part II: Interaction with deep convection. Mon. Wea. Rev., 138, 3603–3622.

    • Search Google Scholar
    • Export Citation
  • Demko, J. C., B. Geerts, Q. Miao, and J. A. Zehnder, 2009: Boundary layer energy transport and cumulus development over a heated mountain: An observational study. Mon. Wea. Rev., 137, 447–468.

    • Search Google Scholar
    • Export Citation
  • De Wekker, S. F. J., 2008: Observational and numerical evidence of depressed convective boundary layer heights near a mountain base. J. Appl. Meteor. Climatol., 47, 1017–1026.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., and A. A. M. Holtslag, 2004: Influence of soil moisture on boundary layer cloud development. J. Hydrometeor., 5, 86–99.

    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A. B., 1998: A soil moisture–rainfall feedback mechanism. Part I: Theory and observations. Water Resour. Res., 34, 765–776.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and E. A. B. Eltahir, 2003a: Atmospheric controls on soil moisture–boundary layer interactions. Part I: Framework development. J. Hydrometeor., 4, 552–569.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and E. A. B. Eltahir, 2003b: Atmospheric controls on soil moisture–boundary layer interactions. Part II: Feedbacks within the continental United States. J. Hydrometeor., 4, 570–583.

    • Search Google Scholar
    • Export Citation
  • Finnigan, J. J., R. Clement, Y. Malhi, R. Leuning, and H. Cleugh, 2003: A re-evaluation of long-term flux measurement techniques. Part I: Averaging and coordinate rotation. Bound.-Layer Meteor., 107, 1–48.

    • Search Google Scholar
    • Export Citation
  • Gallus, W. A., and M. Segal, 2000: Sensitivity of forecast rainfall in a Texas convective system to soil moisture and convective parameterization. Wea. Forecasting, 15, 509–525.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., Q. Miao, and J. C. Demko, 2008: Pressure perturbations and upslope flow over a heated, isolated mountain. Mon. Wea. Rev., 136, 4272–4288.

    • Search Google Scholar
    • Export Citation
  • Grayson, R. B., A. W. Western, F. H. S. Chiew, and G. Blöschl, 1997: Preferred states in spatial soil moisture patterns: Local and nonlocal controls. Water Resour. Res., 33, 2897–2908, doi:10.1029/97WR02174.

    • Search Google Scholar
    • Export Citation
  • Hauck, C., C. Barthlott, L. Krauss, and N. Kalthoff, 2011: Soil moisture variability and its influence on convective precipitation over complex terrain. Quart. J. Roy. Meteor. Soc., 137, 42–56.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., and W. Shi, 2000: Dominant factors responsible for interannual variability of the summer monsoon in the southwestern United States. J. Climate, 13, 759–776.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., and Coauthors, 2006: The NAME 2004 field campaign and modeling strategy. Bull. Amer. Meteor. Soc., 87, 79–94.

  • Higgins, R. W., and D. Gochis, 2007: Synthesis of results from the North American Monsoon Experiment (NAME) process study. J. Climate, 20, 1601–1607.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., P. Brockhaus, C. S. Bretherton, and C. Schär, 2009: The soil moisture–precipitation feedback in simulations with explicit and parameterized convection. J. Climate, 22, 5003–5020.

    • Search Google Scholar
    • Export Citation
  • Idso, S. B., R. D. Jackson, R. J. Reginato, B. A. Kimball, and F. S. Nakayama, 1975: The dependence of bare soil albedo on soil water content. J. Appl. Meteor., 14, 109–113.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 1138–1140.

  • Kottmeier, C., and Coauthors, 2008: Mechanisms initiating deep convection over complex terrain during COPS. Meteor. Z., 17, 931–948.

    • Search Google Scholar
    • Export Citation
  • Kurc, S. A., and E. E. Small, 2004: Dynamics of evapotranspiration in semiarid grassland and shrubland ecosystems during the summer monsoon season, central New Mexico. Water Resour. Res., 40, W09305, doi:10.1029/2004WR003068.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., and Coauthors, 2002: CASES-97: Late-morning warming and moistening of the convective boundary layer over the Walnut River watershed. Bound.-Layer Meteor., 104, 1–52.

    • Search Google Scholar
    • Export Citation
  • McCollum, D. M., R. A. Maddox, and K. W. Howard, 1995: Case study of a severe mesoscale convective system in central Arizona. Wea. Forecasting, 10, 643–665.

    • Search Google Scholar
    • Export Citation
  • Méndez-Barroso, L. A., E. R. Vivoni, C. J. Watts, and J. C. Rodríguez, 2009: Seasonal and interannual relations between precipitation, surface soil moisture and vegetation dynamics in the North American monsoon region. J. Hydrol., 377, 59–70, doi:10.1016/j.jhydrol.2009.08.009.

    • Search Google Scholar
    • Export Citation
  • Nair, U. S., Y. Wu, J. Kala, T. J. Lyons, R. A. Pielke Sr., and J. M. Hacker, 2011: The role of land use change on the development and evolution of the west coast trough, convective clouds, and precipitation in southwest Australia. J. Geophys. Res., 116, D07103, doi:10.1029/2010JD014950.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16, 1456–1475.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., D. J. Gochis, and T. J. Lang, 2008: The diurnal cycle of clouds and precipitation along the Sierra Madre Occidental observed during NAME-2004: Implications for warm season precipitation estimation in complex terrain. J. Hydrometeor., 9, 728–743.

    • Search Google Scholar
    • Export Citation
  • Njoku, E., 2004: AMSR-E/Aqua daily L3 surface soil moisture, interpretive parameters, and QC EASE-Grids V002, 20060630-20060829. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/docs/daac/ae_land3_l3_soil_moisture.gd.html.]

  • Oncley, S. P., and Coauthors, 2007: The energy balance experiment EBEX-2000. Part I: Overview and energy balance. Bound.-Layer Meteor., 123, 1–28.

    • Search Google Scholar
    • Export Citation
  • Ookouchi, Y., M. Segal, R. C. Kessler, and R. A. Pielke, 1984: Evaluation of soil moisture effects on the generation and modification of mesoscale circulations. Mon. Wea. Rev., 112, 2281–2292.

    • Search Google Scholar
    • Export Citation
  • Pal, J. S., and E. A. B. Eltahir, 2001: Pathways relating soil moisture conditions to future summer rainfall within a model of the land–atmosphere system. J. Climate, 14, 1227–1242.

    • Search Google Scholar
    • Export Citation
  • Pan, Z., E. Takle, M. Segal, and R. Turner, 1996: Influences of model parameterization schemes on the response of rainfall to soil moisture in the central United States. Mon. Wea. Rev., 124, 1786–1802.

    • Search Google Scholar
    • Export Citation
  • Panin, G. N., G. Tetzlaff, and A. Raabe, 1998: Inhomogeneity of the land surface and problems in the parameterization of surface fluxes in natural conditions. Theor. Appl. Climatol., 60, 163–178.

    • Search Google Scholar
    • Export Citation
  • Rowe, A. K., S. A. Rutledge, and T. J. Lang, 2012: Investigation of microphysical processes occurring in organized convection during NAME. Mon. Wea. Rev., 140, 2168–2187.

    • Search Google Scholar
    • Export Citation
  • Rowntree, P. R., and J. A. Bolton, 1983: Simulation of the atmospheric response to soil moisture anomalies over Europe. Quart. J. Roy. Meteor. Soc., 109, 501–526.

    • Search Google Scholar
    • Export Citation
  • Schär, C., D. Lüthi, U. Beyerle, and E. Heise, 1999: The soil–precipitation feedback: A process study with a regional climate model. J. Climate, 12, 722–741.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., F. G. Hall, G. Asrar, D. Strebel, and R. Murphy, 1992: An overview of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE). J. Geophys. Res., 97 (D17), 18 345–18 373.

    • Search Google Scholar
    • Export Citation
  • Shreve, F., and I. L. Wiggins, 1964: Vegetation and Flora of the Sonoran Desert. Stanford University Press, 1752 pp.

  • Small, E., 2001: The influence of soil moisture anomalies on variability of the North American monsoon system. Geophys. Res. Lett., 28, 139–142.

    • Search Google Scholar
    • Export Citation
  • Sun, W.-Y., and Y. Ogura, 1979: Boundary-layer forcing as a possible trigger to a squall-line formation. J. Atmos. Sci., 36, 235–254.

    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., D. J. Parker, and P. P. Harris, 2007: An observational case study of mesoscale atmospheric circulations induced by soil moisture. Geophys. Res. Lett., 34, L15801, doi:10.1029/2007GL030572.

    • Search Google Scholar
    • Export Citation
  • Twine, T. E., and Coauthors, 2000: Correcting eddy-covariance flux underestimates over a grassland. Agric. For. Meteor., 103, 279–300.

    • Search Google Scholar
    • Export Citation
  • Walker, J., and P. R. Rowntree, 1977: The effect of soil moisture on circulation and rainfall in a tropical model. Quart. J. Roy. Meteor. Soc., 103, 29–46.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., 1975: Diurnal variations in precipitation and thunderstorm frequency over the conterminous United States. Mon. Wea. Rev., 103, 406–419.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., B. Geerts, and J. French, 2009: Dynamics of the cumulus cloud margin: An observational study. J. Atmos. Sci., 66, 3660–3677.

    • Search Google Scholar
    • Export Citation
  • Watson, A. I., R. L. Holle, and R. E. López, 1994a: Cloud-to-ground lightning and upper-air patterns during bursts and breaks in the Southwest monsoon. Mon. Wea. Rev., 122, 1726–1739.

    • Search Google Scholar
    • Export Citation
  • Watson, A. I., R. E. López, and R. L. Holle, 1994b: Diurnal cloud-to-ground lightning patterns in Arizona during the Southwest monsoon. Mon. Wea. Rev., 122, 1716–1725.

    • Search Google Scholar
    • Export Citation
  • Watts, C. J., R. L. Scott, J. Garatuza-Payan, J. C. Rodriguez, J. H. Prueger, W. P. Kustas, and M. Douglas, 2007: Changes in vegetation condition and surface fluxes during NAME 2004. J. Climate, 20, 1810–1820.

    • Search Google Scholar
    • Export Citation
  • Williams, E., and Coauthors, 2002: Contrasting convective regimes over the Amazon: Implications for cloud electrification. J. Geophys. Res., 107, 8082, doi:10.1029/2001JD000380.

    • Search Google Scholar
    • Export Citation
  • Wood, E. F., 1997: Effects of soil moisture aggregation on surface evaporative fluxes. J. Hydrol., 190, 397–412.

  • Zehnder, J. A., J. Hu, and A. Razdan, 2007: A stereo photogrammetric technique applied to orographic convection. Mon. Wea. Rev., 135, 2265–2277.

    • Search Google Scholar
    • Export Citation
  • Zhang, D., and R. A. Anthes, 1982: A high-resolution model of the planetary boundary layer—Sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteor., 21, 1594–1609.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 438 186 9
PDF Downloads 316 82 4