Synoptic-Scale Environments of Predecessor Rain Events Occurring East of the Rocky Mountains in Association with Atlantic Basin Tropical Cyclones

Benjamin J. Moore Cooperative Institute for Research in Environmental Sciences, University of Colorado, and NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Benjamin J. Moore in
Current site
Google Scholar
PubMed
Close
,
Lance F. Bosart Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Lance F. Bosart in
Current site
Google Scholar
PubMed
Close
,
Daniel Keyser Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Daniel Keyser in
Current site
Google Scholar
PubMed
Close
, and
Michael L. Jurewicz NOAA/NWS Forecast Office, Binghamton, New York

Search for other papers by Michael L. Jurewicz in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The synoptic-scale environments of predecessor rain events (PREs) occurring to the east of the Rocky Mountains in association with Atlantic basin tropical cyclones (TCs) are examined. PREs that occurred during 1988–2010 are subjectively classified based upon the synoptic-scale upper-level flow configuration within which the PRE develops, with a focus on the following: 1) the position of the jet streak relative to the TC, 2) the position of the jet streak relative to trough and ridge axes, and 3) the positions of trough and ridge axes relative to the PRE and to the TC. Three categories were identified from this classification procedure: “jet in ridge,” “southwesterly jet,” and “downstream confluence.” PRE-relative composite analysis for each category reveals that, consistent with previous studies, PREs typically occur near a low-level baroclinic zone, beneath the equatorward entrance region of an upper-level jet streak, and in the presence of a stream of water vapor from a TC. Despite these common characteristics, key differences exist among the three PRE categories related to the phasing of a TC with the synoptic-scale flow and to the interactions between a TC and its environment. Brief case studies of PREs associated with TC Rita (2005), TC Wilma (2005), and TC Ernesto (2006) are presented as specific examples of the three PRE categories.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/MWR-D-12-00178.s1.

Corresponding author address: Benjamin J. Moore, NOAA/Earth System Research Laboratory, Physical Sciences Division, Mail Code R/PSD2, 325 Broadway, Boulder, CO 80305. E-mail: benjamin.moore@noaa.gov

Abstract

The synoptic-scale environments of predecessor rain events (PREs) occurring to the east of the Rocky Mountains in association with Atlantic basin tropical cyclones (TCs) are examined. PREs that occurred during 1988–2010 are subjectively classified based upon the synoptic-scale upper-level flow configuration within which the PRE develops, with a focus on the following: 1) the position of the jet streak relative to the TC, 2) the position of the jet streak relative to trough and ridge axes, and 3) the positions of trough and ridge axes relative to the PRE and to the TC. Three categories were identified from this classification procedure: “jet in ridge,” “southwesterly jet,” and “downstream confluence.” PRE-relative composite analysis for each category reveals that, consistent with previous studies, PREs typically occur near a low-level baroclinic zone, beneath the equatorward entrance region of an upper-level jet streak, and in the presence of a stream of water vapor from a TC. Despite these common characteristics, key differences exist among the three PRE categories related to the phasing of a TC with the synoptic-scale flow and to the interactions between a TC and its environment. Brief case studies of PREs associated with TC Rita (2005), TC Wilma (2005), and TC Ernesto (2006) are presented as specific examples of the three PRE categories.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/MWR-D-12-00178.s1.

Corresponding author address: Benjamin J. Moore, NOAA/Earth System Research Laboratory, Physical Sciences Division, Mail Code R/PSD2, 325 Broadway, Boulder, CO 80305. E-mail: benjamin.moore@noaa.gov

Supplementary Materials

    • Supplemental Materials (RAR 4.50 MB)
Save
  • Agustí-Panareda, A., C. D. Thorncroft, G. C. Craig, and S. L. Gray, 2004: The extratropical transition of Hurricane Irene (1999): A potential vorticity perspective. Quart. J. Roy. Meteor. Soc., 130, 10471074.

    • Search Google Scholar
    • Export Citation
  • Archambault, H. M., 2011: The downstream extratropical flow response to recurving western North Pacific tropical cyclones. Ph.D. dissertation, University at Albany, State University of New York, 212 pp. [Available online at http://www.atmos.albany.edu/student/heathera/dissertation/.]

  • Atallah, E. H., and L. F. Bosart, 2003: The extratropical transition and precipitation distribution of Hurricane Floyd (1999). Mon. Wea. Rev., 131, 10631081.

    • Search Google Scholar
    • Export Citation
  • Atallah, E. H., L. F. Bosart, and A. R. Aiyyer, 2007: Precipitation distribution associated with landfalling tropical cyclones over the eastern United States. Mon. Wea. Rev., 135, 21852206.

    • Search Google Scholar
    • Export Citation
  • Augustine, J. A., and F. Caracena, 1994: Lower-tropospheric precursors to nocturnal MCS development over the central United States. Wea. Forecasting, 9, 116135.

    • Search Google Scholar
    • Export Citation
  • Bell, G. D., and L. F. Bosart, 1988: Appalachian cold-air damming. Mon. Wea. Rev., 116, 137161.

  • Bosart, L. F., and F. H. Carr, 1978: A case study of excessive rainfall centered around Wellsville, New York, 20–21 June 1972. Mon. Wea. Rev., 106, 348362.

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., and D. B. Dean, 1991: The Agnes rainstorm of June 1972: Surface feature evolution culminating in inland storm redevelopment. Wea. Forecasting, 6, 515537.

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., and G. M. Lackmann, 1995: Postlandfall tropical cyclone reintensification in a weakly baroclinic environment: A case study of Hurricane David (September 1979). Mon. Wea. Rev., 123, 32683291.

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., W. E. Bracken, J. Molinari, C. S. Velden, and P. G. Black, 2000: Environmental influences on the rapid intensification of Hurricane Opal (1995) over the Gulf of Mexico. Mon. Wea. Rev., 128, 322352.

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., J. M. Cordeira, T. J. Galarneau Jr., B. J. Moore, and H. M. Archambault, 2012: An analysis of multiple predecessor rain events ahead of Tropical Cyclones Ike and Lowell: 10–15 September 2008. Mon. Wea. Rev., 140, 10811107.

    • Search Google Scholar
    • Export Citation
  • Byun, K.-Y., and T.-Y. Lee, 2012: Remote effects of tropical cyclones on heavy rainfall over the Korean peninsula—Statistical and composite analysis. Tellus, 64A, 14983, doi:10.3402/tellusa.v64i0.14983.

    • Search Google Scholar
    • Export Citation
  • Cammas, J.-P., D. Keyser, G. M. Lackmann, and J. Molinari, 1994: Diabatic redistribution of potential vorticity accompanying the development of an outflow jet within a strong extratropical cyclone. Preprints, Int. Symp. on the Life Cycles of Extratropical Cyclones, Vol. II, Bergen, Norway, Geophysical Institute, University of Bergen, 403–409.

  • Coniglio, M. C., J. Y. Hwang, and D. J. Stensrud, 2010: Environmental factors in the upscale growth and longevity of MCSs derived from Rapid Update Cycle analyses. Mon. Wea. Rev., 138, 35143539.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., M. J. Dickinson, and L. F. Bosart, 2009: The contribution of eastern North Pacific tropical cyclones to the rainfall climatology of the southwest United States. Mon. Wea. Rev., 137, 24152435.

    • Search Google Scholar
    • Export Citation
  • Cote, M. R., 2007: Predecessor rain events in advance of tropical cyclones. M.S. thesis, Department of Earth and Atmospheric Sciences, University at Albany, State University of New York, 200 pp. [Available online at http://cstar.cestm.albany.edu/CAP_Projects/Project10/index.htm.]

  • Dean, D. B., and L. F. Bosart, 1996: Northern Hemisphere 500-hPa trough merger and fracture: A climatology and case study. Mon. Wea. Rev., 124, 26442671.

    • Search Google Scholar
    • Export Citation
  • Franklin, J. L., and D. P. Brown, 2008: Atlantic hurricane season of 2006. Mon. Wea. Rev., 136, 11741200.

  • Fritsch, J. M., and R. E. Carbone, 2004: Improving quantitative precipitation forecasts in the warm season: A USWRP research and development strategy. Bull. Amer. Meteor. Soc., 85, 955965.

    • Search Google Scholar
    • Export Citation
  • Galarneau, T. J., Jr., L. F. Bosart, and R. S. Schumacher, 2010: Predecessor rain events ahead of tropical cyclones. Mon. Wea. Rev., 138, 32723297.

    • Search Google Scholar
    • Export Citation
  • Harr, P. A., and R. L. Elsberry, 2000: Extratropical transition of tropical cyclones over the western North Pacific. Part I: Evolution of structural characteristics during the transition process. Mon. Wea. Rev., 128, 26132633.

    • Search Google Scholar
    • Export Citation
  • Harr, P. A., R. L. Elsberry, and T. F. Hogan, 2000: Extratropical transition of tropical cyclones over the western North Pacific. Part II: The impact of midlatitude circulation characteristics. Mon. Wea. Rev., 128, 26342653.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., and Coauthors, 2003: The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions. Wea. Forecasting, 18, 10521092.

    • Search Google Scholar
    • Export Citation
  • Junker, N. W., R. S. Schneider, and S. L. Fauver, 1999: A study of heavy rainfall events during the Great Midwest Flood of 1993. Wea. Forecasting, 14, 701712.

    • Search Google Scholar
    • Export Citation
  • Keyser, D., M. J. Reeder, and R. J. Reed, 1988: A generalization of Petterssen’s frontogenesis function and its relation to the forcing of vertical motion. Mon. Wea. Rev., 116, 762780.

    • Search Google Scholar
    • Export Citation
  • Klein, P. M., P. A. Harr, and R. L. Elsberry, 2000: Extratropical transition of western North Pacific tropical cyclones: An overview and conceptual model of the transformation stage. Wea. Forecasting, 15, 373395.

    • Search Google Scholar
    • Export Citation
  • Klein, P. M., P. A. Harr, and R. L. Elsberry, 2002: Extratropical transition of western North Pacific tropical cyclones: Midlatitude and tropical cyclone contributions to reintensification. Mon. Wea. Rev., 130, 22402259.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., C. F. Chappell, and L. R. Hoxit, 1979: Synoptic and meso-α scale aspects of flash flood events. Bull. Amer. Meteor. Soc., 60, 115123.

    • Search Google Scholar
    • Export Citation
  • Meng, Z., and Y. Zhang, 2012: On the squall lines preceding landfalling tropical cyclones in China. Mon. Wea. Rev., 140, 445470.

  • Moore, J. T., F. H. Glass, C. E. Graves, S. M. Rochette, and M. J. Singer, 2003: The environment of warm-season elevated thunderstorms associated with heavy rainfall over the central United States. Wea. Forecasting, 18, 861878.

    • Search Google Scholar
    • Export Citation
  • Petterssen, S., 1936: Contribution to the theory of frontogenesis. Geofys. Publ., 11 (6), 127.

  • Petterssen, S., 1956: Motion and Motion Systems. Vol. 2, Weather Analysis and Forecasting, McGraw-Hill, 428 pp.

  • Riemer, M., S. C. Jones, and C. A. Davis, 2008: The impact of extratropical transition on the downstream flow: An idealized modeling study with a straight jet. Quart. J. Roy. Meteor. Soc., 134, 6991.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057.

  • Schumacher, R. S., and R. H. Johnson, 2005: Organization and environmental properties of extreme-rain-producing mesoscale convective systems. Mon. Wea. Rev., 133, 961976.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and C. A. Davis, 2010: Ensemble-based forecast uncertainty analysis of diverse heavy rainfall events. Wea. Forecasting, 25, 11031122.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and T. J. Galarneau Jr., 2012: Moisture transport into midlatitudes ahead of recurving tropical cyclones and its relevance in two predecessor rain events. Mon. Wea. Rev., 140, 18101827.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., T. J. Galarneau Jr., and L. F. Bosart, 2011: Distant effects of a recurving tropical cyclone on rainfall in a midlatitude convective system: A high-impact predecessor rain event. Mon. Wea. Rev., 139, 650667.

    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., 2002: Extratropical transition of southwest Pacific tropical cyclones. Part I: Climatology and mean structure changes. Mon. Wea. Rev., 130, 590609.

    • Search Google Scholar
    • Export Citation
  • Srock, A. F., and L. F. Bosart, 2009: Heavy precipitation associated with southern Appalachian cold-air damming and Carolina coastal frontogenesis in advance of weak landfalling Tropical Storm Marco (1990). Mon. Wea. Rev., 137, 24482470.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., and D. B. Parsons, 1993: Evolution of environmental conditions preceding the development of a nocturnal mesoscale convective complex. Mon. Wea. Rev., 121, 10781098.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., Y. Wang, and H. Fudeyasu, 2009: The role of Typhoon Songda (2004) in producing distantly located heavy rainfall in Japan. Mon. Wea. Rev., 137, 36993716.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 627 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 475 197 12
PDF Downloads 755 203 10