The Inflow to Tropical Cyclone Humberto (2001) as Viewed with Azimuth–Height Surfaces over Three Days

Gary M. Barnes University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by Gary M. Barnes in
Current site
Google Scholar
PubMed
Close
and
Klaus P. Dolling University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by Klaus P. Dolling in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The deployment of 228 global positioning system dropwindsondes (GPS sondes), over three consecutive days in Tropical Cyclone Humberto (2001), allows for the creation of azimuth–height (ϕz) surfaces from sea level to 3-km altitude at 0.25° and 0.5° latitude distance from the storm center. The authors estimate the radial flow along these ϕz surfaces to diagnose the mass flux through said surfaces as Humberto deepens from 1000 to 983 hPa from the first to the second day, then fills to 992 hPa by the third day. As the tropical cyclone (TC) intensifies the width, depth, and rate of inflow increase. The inflow remains a wavenumber-1 pattern throughout the three days. The center of the inflow rotates clockwise over this period following the expected forcing due to both the tropical cyclone motion and deep layer shear vectors. Net vertical mass flux, based on continuity within a given volume, is correlated with TC intensity only for the inner 0.25° ϕz surface. Slightly farther from the center, at 0.5° radial distance, the net mass flux is much larger but is not correlated with intensity. The rainbands that exist between the 0.25° and the 0.50° rings are ineffective at either creating or maintaining a warm core and lowering the surface pressure. The authors speculate that the warming associated with convective bands at larger radii is more easily eroded by the strong wind shear; convective bands nearer the center produce a more complete wind field that protects the warm core.

Corresponding author address: G. M. Barnes, Department of Meteorology, University of Hawaii at Manoa, 2525 Correa Rd., Honolulu, HI 96822. E-mail: gbarnes@hawaii.edu

Abstract

The deployment of 228 global positioning system dropwindsondes (GPS sondes), over three consecutive days in Tropical Cyclone Humberto (2001), allows for the creation of azimuth–height (ϕz) surfaces from sea level to 3-km altitude at 0.25° and 0.5° latitude distance from the storm center. The authors estimate the radial flow along these ϕz surfaces to diagnose the mass flux through said surfaces as Humberto deepens from 1000 to 983 hPa from the first to the second day, then fills to 992 hPa by the third day. As the tropical cyclone (TC) intensifies the width, depth, and rate of inflow increase. The inflow remains a wavenumber-1 pattern throughout the three days. The center of the inflow rotates clockwise over this period following the expected forcing due to both the tropical cyclone motion and deep layer shear vectors. Net vertical mass flux, based on continuity within a given volume, is correlated with TC intensity only for the inner 0.25° ϕz surface. Slightly farther from the center, at 0.5° radial distance, the net mass flux is much larger but is not correlated with intensity. The rainbands that exist between the 0.25° and the 0.50° rings are ineffective at either creating or maintaining a warm core and lowering the surface pressure. The authors speculate that the warming associated with convective bands at larger radii is more easily eroded by the strong wind shear; convective bands nearer the center produce a more complete wind field that protects the warm core.

Corresponding author address: G. M. Barnes, Department of Meteorology, University of Hawaii at Manoa, 2525 Correa Rd., Honolulu, HI 96822. E-mail: gbarnes@hawaii.edu
Save
  • Adler, R. F., and E. B. Rodgers, 1977: Satellite-observed latent heat release in a tropical cyclone. Mon. Wea. Rev., 105, 956963.

  • Anthes, R. A., and S. W. Chang, 1978: Response of the hurricane boundary layer to changes of sea surface temperature in a numerical model. J. Atmos. Sci., 35, 12401255.

    • Search Google Scholar
    • Export Citation
  • Barnes, G. M., 2008: Atypical thermodynamic profiles in hurricanes. Mon. Wea. Rev., 136, 631643.

  • Barnes, G. M., and M. D. Powell, 1995: Evolution of the inflow boundary layer of Hurricane Gilbert (1988). Mon. Wea. Rev., 123, 23482368.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., 1997: The effect of relative flow on the asymmetric structure of the interior of hurricanes. J. Atmos. Sci., 54, 703724.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and J. Simpson, 1987: Thermodynamic budget diagrams for the hurricane subcloud layer. J. Atmos. Sci., 44, 842849.

  • Beven, J. L., S. R. Stewart, M. B. Lawrence, L. A. Avila, J. L. Franklin, and R. J. Pasch, 2003: Annual summary—Atlantic season of 2001. Mon. Wea. Rev., 131, 14541484.

    • Search Google Scholar
    • Export Citation
  • Black, M. L., J. F. Gamache, F. D. Marks Jr., C. E. Samsury, and H. E. Willoughby, 2002: Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994: The effect of vertical shear on structure and intensity. Mon. Wea. Rev., 130, 22912312.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., 2002: A cloud-resolving simulation of Hurricane Bob (1991): Storm structure and eyewall buoyancy. Mon. Wea. Rev., 130, 15731592.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., M. T. Montgomery, and Z. Pu, 2006: High-resolution simulation of Hurricane Bonnie (1998). Part I: The organization of eyewall vertical motion. J. Atmos. Sci., 63, 1942.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and R. Rotunno, 2009: Evaluation of an analytical model for the maximum intensity of tropical cyclones. J. Atmos. Sci., 66, 30423060.

    • Search Google Scholar
    • Export Citation
  • Cerveny, R. S., and L. E. Newman, 2000: Climatological relationships between tropical cyclones and rainfall. Mon. Wea. Rev., 128, 33293336.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., and J. Molinari, 2003: The relationship between storm motion, vertical wind shear, and convective asymmetries. J. Atmos. Sci., 60, 366376.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1994: A Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic basin. Wea. Forecasting, 9, 209220.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531543.

    • Search Google Scholar
    • Export Citation
  • Dolling, K. P., 2010: The evolution of Hurricane Humberto (2001). Ph.D. dissertation, Dept. of Meteorology, University of Hawaii at Manoa, 180 pp.

  • Dolling, K. P., and G. M. Barnes, 2012a: The creation of a high equivalent potential temperature reservoir in Tropical Storm Humberto (2001) and its possible role in storm deepening. Mon. Wea. Rev., 140, 492505.

    • Search Google Scholar
    • Export Citation
  • Dolling, K. P., and G. M. Barnes, 2012b: Warm-core formation in Tropical Storm Humberto (2001). Mon. Wea. Rev., 140, 11771190.

  • Eastin, M. D., W. M. Gray, and P. G. Black, 2005: Buoyancy of convective vertical motions in the inner core of intense hurricanes. Part II: Case studies. Mon. Wea. Rev., 133, 209227.

    • Search Google Scholar
    • Export Citation
  • Eliassen, A., 1951: Slow thermally or frictionally controlled meridional circulation in a circular vortex. Astrophys. Norv., 5, 1960.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605.

    • Search Google Scholar
    • Export Citation
  • Foote, G. B., and J. C. Fankhauser, 1973: Airflow and moisture budget beneath a northeast Colorado hailstorm. J. Appl. Meteor., 12, 13301353.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., 1977: The structure and energetics of the tropical cyclone. Part I: Storm structure. Mon. Wea. Rev., 105, 11191135.

  • Frank, W. M., and E. A. Ritchie, 1999: Effects of environmental flow upon tropical cyclone structure. Mon. Wea. Rev., 127, 20442061.

  • Fritsch, F. N., and R. E. Carlson, 1980: Monotone piecewise cubic interpolation. SIAM J. Numer. Anal., 17, 238246.

  • Holland, G. J., 1995: Mature structure and structure change. A Global View of Tropical Cyclones, R. L. Elsberry, Ed., U.S. Office of Naval Research Marine Meteorology Program, 13–52.

  • Jorgensen, D. P., 1984: Mesoscale and convective-scale characteristics of mature hurricanes. Part II: Inner core structure of Hurricane Allen (1980). J. Atmos. Sci., 41, 12871311.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., E. J. Zipser, and M. A. LeMone, 1985: Vertical motions in intense hurricanes. J. Atmos. Sci., 42, 839856.

  • Kaplan, J., and W. M. Frank, 1993: the large-scale inflow-layer of Hurricane Frederic (1979). Mon. Wea. Rev., 121, 320.

  • Kepert, J. D., 2006a: Observed boundary layer wind structure and balance in the hurricane core. Part I: Hurricane Georges. J. Atmos. Sci., 63, 21692193.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2006b: Observed boundary layer wind structure and balance in the hurricane core. Part II: Hurricane Mitch. J. Atmos. Sci., 63, 21942211.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., and Y. Wang, 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part II: Nonlinear enhancement. J. Atmos. Sci., 58, 24852501.

    • Search Google Scholar
    • Export Citation
  • Malkus, J. S., and H. Riehl, 1960: On the dynamics and energy transformations in steady-state hurricanes. Tellus, 12, 120.

  • Marks, F. D., Jr., 1985: Evolution of the structure of precipitation in Hurricane Allen. Mon. Wea. Rev., 113, 909930.

  • Marks, F. D., Jr., R. A. Houze, and J. F. Gamache, 1992: Dual-aircraft investigation of the inner core of Hurricane Norbert. Part I: Kinematic structure. J. Atmos. Sci., 49, 919942.

    • Search Google Scholar
    • Export Citation
  • Martin, C., 2007: ASPEN user’s manual. NCAR, 61 pp. [Available online at http://www.eol.ucar.edu/data/software/aspen/Aspen%20Manual.pdf/.]

  • Molinari, J., P. K. Moore, and V. P. Idone, 1999: Convective structure of hurricanes as revealed by lightning locations. Mon. Wea. Rev., 127, 520534.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., R. K. Smith, and S. V. Nguyen, 2010: Sensitivity of tropical cyclone models to the surface drag coefficient. Quart. J. Roy. Meteor. Soc., 136, 19451953.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1982: The transition of the Hurricane Frederic boundary-layer wind field from the open Gulf of Mexico to landfall. Mon. Wea. Rev., 110, 19121932.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and M. H. Wilkening, 1985: Characteristics of mountain-induced thunderstorms and cumulus congestus clouds from budget measurements. J. Atmos. Sci., 42, 773783.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, F. D. Marks Jr., and J. F. Gamache, 2000: Low-wavenumber structure and evolution of the hurricane inner core observed by airborne dual-Doppler radar. Mon. Wea. Rev., 128, 16531680.

    • Search Google Scholar
    • Export Citation
  • Rodgers, E. B., and R. F. Adler, 1981: Tropical cyclone rainfall characteristics as determined from satellite passive microwave radiometer. Mon. Wea. Rev., 109, 506521.

    • Search Google Scholar
    • Export Citation
  • Rodgers, R., S. Chen, J. Tenerelli, and H. Willoughby, 2003: A numerical study of the impact of vertical shear on the distribution of rainfall in Hurricane Bonnie (1998). Mon. Wea. Rev., 131, 15771599.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542561.

    • Search Google Scholar
    • Export Citation
  • Samsury, C. E., and E. J. Zipser, 1995: Secondary wind maxima in hurricanes: Airflow and relationship to rainbands. Mon. Wea. Rev., 123, 35023517.

    • Search Google Scholar
    • Export Citation
  • Schneider, R., and G. M. Barnes, 2005: Low-level kinematic, thermodynamic, and reflectivity fields associated with Hurricane Bonnie (1998) at landfall. Mon. Wea. Rev., 133, 32433259.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., 1983: The asymmetric boundary layer flow under a translating hurricane. J. Atmos. Sci., 40, 19841998.

  • Sitkowski, M., and G. M. Barnes, 2009: Low-level thermodynamic, kinematic, and reflectivity fields of Hurricane Guillermo (1997) during rapid intensification. Mon. Wea. Rev., 137, 645663.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and M. T. Montgomery, 2008: Balanced boundary layers in hurricane models. Quart. J. Roy. Meteor. Soc., 134, 13851395.

  • Smith, R. K., and M. T. Montgomery, 2010: Hurricane boundary-layer theory. Quart. J. Roy. Meteor. Soc., 136, 16651670.

  • Smith, R. K., M. T. Montgomery, and S. V. Nguyen, 2009: Tropical cyclone spin-up revisited. Quart. J. Roy. Meteor. Soc., 135, 13211335.

    • Search Google Scholar
    • Export Citation
  • Vigh, J. L., and W. H. Schubert, 2009: Rapid development of the tropical cyclone warm core. J. Atmos. Sci., 66, 33353350.

  • Willoughby, H. E., and M. B. Chelmow, 1982: Objective determination of hurricane tracks from aircraft observations. Mon. Wea. Rev., 110, 12981305.

    • Search Google Scholar
    • Export Citation
  • Wu, L., S. A. Braun, J. Halverson, and G. Heymsfield, 2006: A numerical study of Hurricane Erin (2001). Part I: Model verification and storm evolution. J. Atmos. Sci., 63, 6586.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., R. F. Rodgers, D. S. Nolan, and F. D. Marks Jr., 2011: On the characteristic height scales of the hurricane boundary layer. Mon. Wea. Rev., 139, 25232535.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 379 186 3
PDF Downloads 104 30 5