Seasonal Prediction of Arctic Sea Ice Extent from a Coupled Dynamical Forecast System

Wanqiu Wang Climate Prediction Center, National Centers for Environmental Prediction, Camp Spring, Maryland

Search for other papers by Wanqiu Wang in
Current site
Google Scholar
PubMed
Close
,
Mingyue Chen Climate Prediction Center, National Centers for Environmental Prediction, Camp Spring, Maryland

Search for other papers by Mingyue Chen in
Current site
Google Scholar
PubMed
Close
, and
Arun Kumar Climate Prediction Center, National Centers for Environmental Prediction, Camp Spring, Maryland

Search for other papers by Arun Kumar in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

While fully coupled atmosphere–ocean models have been used to study the seasonal predictability of sea ice variations within the context of models’ own variability, their capability in predicting the observed sea ice at the seasonal time scales is not well assessed. In this study, sea ice predictions from the recently developed NCEP Climate Forecast System, version 2 (CFSv2), a fully coupled atmosphere–ocean model including an interactive dynamical sea ice component, are analyzed. The focus of the analysis is the performance of CFSv2 in reproducing observed Northern Hemisphere sea ice extent (SIE). The SIE climatology, long-term trend, interannual variability, and predictability are assessed. CFSv2 contains systematic biases that are dependent more on the forecast target month than the initial month, with a positive SIE bias for the forecast for January–September and a negative SIE bias for the forecast for October–December. A large source of seasonal prediction skill is from the long-term trend, which is underestimated in the CFSv2. Prediction skill of interannual SIE anomalies is found to be primarily within the first three target months and is largest in the summer and early fall. The performance of the prediction of sea ice interannual variations varies from year to year and is found to be related to initial sea ice thickness. Potential predictability based on the forecast ensemble, its dependence on model deficiencies, and implications of the results from this study for improvements in the seasonal sea ice prediction are discussed.

Corresponding author address: Wanqiu Wang, NOAA/Center for Weather and Climate Prediction, 5830 University Research Court, Room 3004, College Park, MD 20740. E-mail: wanqiu.wang@noaa.gov

Abstract

While fully coupled atmosphere–ocean models have been used to study the seasonal predictability of sea ice variations within the context of models’ own variability, their capability in predicting the observed sea ice at the seasonal time scales is not well assessed. In this study, sea ice predictions from the recently developed NCEP Climate Forecast System, version 2 (CFSv2), a fully coupled atmosphere–ocean model including an interactive dynamical sea ice component, are analyzed. The focus of the analysis is the performance of CFSv2 in reproducing observed Northern Hemisphere sea ice extent (SIE). The SIE climatology, long-term trend, interannual variability, and predictability are assessed. CFSv2 contains systematic biases that are dependent more on the forecast target month than the initial month, with a positive SIE bias for the forecast for January–September and a negative SIE bias for the forecast for October–December. A large source of seasonal prediction skill is from the long-term trend, which is underestimated in the CFSv2. Prediction skill of interannual SIE anomalies is found to be primarily within the first three target months and is largest in the summer and early fall. The performance of the prediction of sea ice interannual variations varies from year to year and is found to be related to initial sea ice thickness. Potential predictability based on the forecast ensemble, its dependence on model deficiencies, and implications of the results from this study for improvements in the seasonal sea ice prediction are discussed.

Corresponding author address: Wanqiu Wang, NOAA/Center for Weather and Climate Prediction, 5830 University Research Court, Room 3004, College Park, MD 20740. E-mail: wanqiu.wang@noaa.gov
Save
  • Alexander, M. A., U. S. Bhatt, J. Walsh, M. Timlin, and J. Miller, 2004: The atmospheric response to realistic arctic sea ice anomalies in an AGCM during winter. J. Climate, 17, 890905.

    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., L. Ferranti, F. Molteni, and T. N. Palmer, 2010: Impact of 2007 and 2008 Arctic ice anomalies on the atmospheric circulation: Implications for long-range predictions. Quart. J. Roy. Meteor. Soc., 136, 16551664, doi:10.1002/qj.661.

    • Search Google Scholar
    • Export Citation
  • Blanchard-Wrigglesworth, E., K. Armour, C. M. Bitz, and E. deWeaver, 2011a: Persistence and inherent predictability of Arctic sea ice in a GCM ensemble and observations. J. Climate, 24, 231250.

    • Search Google Scholar
    • Export Citation
  • Blanchard-Wrigglesworth, E., C. M. Bitz, and M. M. Holland, 2011b: Influence of initial conditions and climate forcing on predicting Arctic sea ice. Geophys. Res. Lett., 38, L18503, doi:10.1029/2011GL048807.

    • Search Google Scholar
    • Export Citation
  • Cavalieri, D. J., 1994: Sea ice algorithm in NASA Sea Ice Validation Program for the Defense Meteorological Satellite Program Special Sensor Microwave Imager: Final Report. NASA Tech. Memo. 104559, 126 pp.

  • Cavalieri, D. J., C. Parkinson, P. Gloersen, and H. J. Zwally, 1996: Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/nsidc-0051.html.]

  • Chen, M., W. Wang, and A. Kumar, 2010: Prediction of monthly-mean temperature: The roles of atmospheric and land initial conditions and sea surface temperature. J. Climate, 23, 717725.

    • Search Google Scholar
    • Export Citation
  • Chevallier, M., and D. Salas-Mélia, 2012: The role of sea ice thickness distribution in the Arctic sea ice potential predictability: A diagnostic approach with a coupled GCM. J. Climate, 25, 30253038.

    • Search Google Scholar
    • Export Citation
  • Deser, C., R. Tomas, and S. Peng, 2007: The transient atmospheric circulation response to North Atlantic SST and sea ice anomalies. J. Climate, 20, 47514767.

    • Search Google Scholar
    • Export Citation
  • Drobot, S. D., and J. A. Maslanik, 2002: A practical method for long-range forecasting of ice severity in the Beaufort Sea. Geophys. Res. Lett., 29, 1213, doi:10.1029/2001GL014173.

    • Search Google Scholar
    • Export Citation
  • Drobot, S. D., J. A. Maslanik, and C. Fowler, 2006: A long-range forecast of Arctic summer sea-ice minimum extent. Geophys. Res. Lett., 33, L10501, doi:10.1029/2006GL026216.

    • Search Google Scholar
    • Export Citation
  • Francis, J. A., W. Chan, D. J. Leathers, J. R. Miller, and D. E. Veron, 2009: Winter Northern Hemisphere weather patterns remember summer Arctic sea-ice extent. Geophys. Res. Lett., 36, L07503, doi:10.1029/2009GL037274.

    • Search Google Scholar
    • Export Citation
  • Graversen, R., T. Mauritsen, S. Drijfhout, M. Tjernström, and S. Martensson, 2011: Warm winds from the Pacific caused extensive Arctic sea-ice melt in summer 2007. Climate Dyn., 36 (11), 21032112, doi:10.1007/s00382-010-0809-z.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., M. J. Harrison, R. C. Pacanowski, and A. Rosati, 2004: Technical guide to MOM4. GFDL Ocean Group Technical Rep. 5, 337 pp. [Available online at http://www.gfdl.noaa.gov/~fms.]

  • Holland, M. M., and J. Stroeve, 2011: Changing seasonal sea ice predictor relationships in a changing Arctic climate. Geophys. Res. Lett., 38, L18501, doi:10.1029/2011GL049303.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., D. A. Bailey, and S. Vavrus, 2011: Inherent sea ice predictability in the rapidly changing Arctic environment of the Community Climate System Model, version 3. Climate Dyn., 36, 12391253, doi:10.1007/s00382-010-0792-4.

    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., and J. K. Dukowicz, 1997: An elastic–viscous–plastic model for sea ice dynamics. J. Phys. Oceanogr., 27, 18491868.

  • Kay, J. E., T. L’Ecuyer, A. Gettelman, G. Stephens, and C. O’Dell, 2008: The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum. Geophys. Res. Lett., 35, L08503, doi:10.1029/2008GL033451.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., M. M. Holland, and A. Jahn, 2011: Inter-annual to multi-decadal Arctic sea ice extent trends in a warming world. Geophys. Res. Lett., 38, L15708, doi:10.1029/2011GL048008.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., and M. P. Hoerling, 2000: Analysis of a conceptual model of seasonal climate variability and implications for seasonal predictions. Bull. Amer. Meteor. Soc., 81, 255264.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., and Coauthors, 2010: Contribution of sea ice loss to Arctic amplification. Geophys. Res. Lett., 37, L21701, doi:10.1029/2010GL045022.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., M. Chen, and W. Wang, 2011: An analysis of prediction skill of monthly mean climate variability. Climate Dyn., 37, 11191131, doi:10.1007/s00382-010-0901-4.

    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., A. Kumar, G. D. Bell, M. S. Halpert, and R. W. Higgins, 2008: Role of the Pacific-North American (PNA) pattern in the 2007 Arctic sea ice decline. Geophys. Res. Lett., 35, L20701, doi:10.1029/2008GL035205.

    • Search Google Scholar
    • Export Citation
  • Lindsay, R. W., J. Zhang, A. J. Schweiger, and M. A. Steele, 2008: Seasonal predictions of ice extent in the Arctic Ocean. J. Geophys. Res., 113, C02023, doi:10.1029/2007JC004259.

    • Search Google Scholar
    • Export Citation
  • Mahajan, S., R. Zhang, and T. L. Delworth, 2011: Impact of the Atlantic meridional overturning circulation (AMOC) on Arctic surface air temperature and sea ice variability. J. Climate, 24, 65736581.

    • Search Google Scholar
    • Export Citation
  • Min, S.-K., X. Zhang, F. W. Zwiers, and T. Agnew, 2008: Human influence on Arctic sea ice detectable from early 1990s onwards. Geophys. Res. Lett., 35, L21701, doi:10.1029/2008GL035725.

    • Search Google Scholar
    • Export Citation
  • Ogi, M., and J. M. Wallace, 2007: Summer minimum Arctic sea ice extent and the associated summer atmospheric circulation. Geophys. Res. Lett., 34, L12705, doi:10.1029/2007GL02989.

    • Search Google Scholar
    • Export Citation
  • Pohlmann, H., M. Botzet, M. Latif, A. Roesch, M. Wild, and P. Tschuck, 2004: Estimating the decadal predictability of a coupled AOGCM. J. Climate, 17, 44634472.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057.

  • Sardeshmukh, P. D., G. P. Compo, and C. Penland, 2000: Changes of probability associated with El Niño. J. Climate, 13, 42684286.

  • Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 13341337, doi:10.1038/nature09051.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., A. P. Barrett, J. C. Stroeve, D. N. Kindig, and M. M. Holland, 2009: The emergence of surface-based Arctic amplification. The Cryosphere, 3, 1119.

    • Search Google Scholar
    • Export Citation
  • Shimada, K., T. Kamoshida, M. Itoh, S. Nishino, E. Carmack, F. McLaughlin, S. Zimmermann, and A. Proshutinsky, 2006: Pacific Ocean inflow: Influence on catastrophic reduction of sea ice cover in the Arctic Ocean. Geophys. Res. Lett., 33, L08605, doi:10.1029/2005GL025624.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J., M. M. Holland, W. Meier, T. Scambos, and M. Serreze, 2007: Arctic sea ice decline: Faster than forecast. Geophys. Res. Lett., 34, L09501, doi:10.1029/2007GL029703.

    • Search Google Scholar
    • Export Citation
  • Tivy, A., B. Alt, S. E. L. Howell, K. Wilson, and J. Yackel, 2007: Long-range prediction of the shipping season in Hudson Bay: A statistical approach. Wea. Forecasting, 22, 10631075.

    • Search Google Scholar
    • Export Citation
  • Wang, W., P. Xie, S. H. Yo, Y. Xue, A. Kumar, and X. Wu, 2011: An assessment of the surface climate in the NCEP Climate Forecast System Reanalysis. Climate Dyn., 37, 16011620, doi:10.1007/s00382-010-0935-7.

    • Search Google Scholar
    • Export Citation
  • Winton, M., 2000: A reformulated three-layer sea ice model. J. Atmos. Oceanic Technol., 17, 525531.

  • Zhang, J., R. Lindsay, M. Steele, and A. Schweiger, 2008a: What drove the dramatic retreat of arctic sea ice during summer 2007? Geophys. Res. Lett., 35, L11505, doi:10.1029/2008GL034005.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., M. Steele, R. Lindsay, A. Schweiger, and J. Morison, 2008b: Ensemble 1-year predictions of Arctic sea ice for the spring and summer of 2008. Geophys. Res. Lett., 35, L08502, doi:10.1029/2008GL033244.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 778 362 58
PDF Downloads 455 150 24